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Abstract. Industrial Intrusion Detection Systems (IIDSs) play a crit-
ical role in safeguarding Industrial Control Systems (ICSs) against tar-
geted cyberattacks. Unsupervised anomaly detectors, capable of learning
the expected behavior of physical processes, have proven effective in de-
tecting even novel cyberattacks. While offering decent attack detection,
these systems, however, still suffer from too many False-Positive Alarms
(FPAs) that operators need to investigate, eventually leading to alarm
fatigue. To address this issue, in this paper, we challenge the notion of
relying on a single IIDS and explore the benefits of combining multiple
IIDSs. To this end, we examine the concept of ensemble learning, where
a collection of classifiers (IIDSs in our case) are combined to optimize
attack detection and reduce FPAs. While training ensembles for super-
vised classifiers is relatively straightforward, retaining the unsupervised
nature of IIDSs proves challenging. In that regard, novel time-aware en-
semble methods that incorporate temporal correlations between alerts
and transfer-learning to best utilize the scarce training data constitute
viable solutions. By combining diverse IIDSs, the detection performance
can be improved beyond the individual approaches with close to no FPAs,
resulting in a promising path for strengthening ICS cybersecurity.
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1 Introduction

Industrial Intrusion Detection Systems (IIDSs) represent a fundamental build-
ing block to defend Industrial Control Systems (ICSs) against constantly emerg-
ing and highly targeted cyberattacks [4]. Besides offering a cost-effective security
upgrade and serving as a second line of defense once preventive measures have
been breached, IIDSs are also suitable for deployment in legacy ICSs with poor
security where preventive measures, e.g., encryption and authentication, are hard
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to retrofit. To this end, research proposed a plethora of algorithms that auto-
matically raise alerts for suspected malicious activities in ICSs [8,11,18,33,47,50].

Since ICS deployments are rather unique and adversaries in that domain are
particularly sophisticated, ICSs often face zero-day attacks [4,33]. This threat
significantly hampers the effectiveness of supervised detection approaches since
their reliance on samples of (known) attacks for training runs the risk of de-
tecting only these trained attacks or slight variants at best [2,24]. In contrast,
unsupervised anomaly detectors [8], which can learn the expected behavior of
repetitive physical processes by means of, e.g., machine learning, have proven
successful across many scientific evaluations [5,14,22,29,46]. Their main benefit
lies in training on benign-only data which can easily be recorded during regular
operation of an ICS as well as their ability to detect novel cyberattacks.

Despite unsupervised IIDSs being capable of detecting even zero-day attacks,
they come at the notorious risk of emitting False-Positive Alarms (FPAs) [2,41].
In practice, every alert has to undergo analysis by an operator to decide whether
it is reasonable to interrupt operation in case of a suspected cyberattack. Con-
sequently, as stated by Etalle et al. [13], FPAs significantly contribute to an
IIDS’s total cost of ownership. Moreover, since cyberattacks against ICSs’ phys-
ical processes are still rare [4], minimizing the number of FPAs is equally as
important as detecting attacks because they increase the risk of alarm fatigue
where operators start ignoring the IIDS over time, such that actual attacks can
slip through.

To meet these high detection standards, most scientific proposals aim to find
yet another single-best, monolithic IIDS that outperforms existing work. But,
studies of unsupervised IIDSs reveal that no approach currently detects all at-
tacks contained in prominent datasets [46] or documented in literature [12]. For-
tunately, real-world deployments are not restricted to integrating just the best-
performing IIDS and may instead choose from the several available approaches
to play off their advantages and disadvantages against each other. These obser-
vations raise the question whether one IIDS is enough to provide strong ICS
security or if a combination of multiple IIDSs can join forces to optimize detec-
tion performance beyond what each individual approach can achieve.

The problem of combining a collection of classifiers (e.g., IIDSs) into a single
system is generally known as ensemble learning [38,49,51]. However, while the
training of an ensemble is relatively straightforward for supervised IIDSs, where
simply another round of training suffices [16,25,27,34], retaining the unsuper-
vised nature, i.e., requiring no attack knowledge during training, as is desirable
for usage in ICSs, proves challenging. Consequently, we explore how ensembles
of unsupervised IIDSs can be built and to which extent they are superior to
monolithic deployments, e.g., by detecting more attacks in total or reducing
FPA.

Contributions. To better understand the potential of ensemble learning for
industrial intrusion detection, we make the following contributions:

e We uncover weaknesses in monolithic IIDS deployments and identify three
challenges on the path to realize unsupervised IIDS ensembles (Sec. 3).
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e Exploring the potential of IIDS ensembles, we reveal an enormous theoretical
potential that, however, proves hard to transfer into practice (Sec. 4).

e Digging deeper, we find one reason inhibiting this potential in the ensembles’
insufficiency to regard temporal information and prove that a novel class of
time-aware ensembles can drastically improve this situation (Sec. 5).

e Lastly, we consider transfer-learning, i.e., training an ensemble in a different
ICS under attack and transferring the model to the target ICS, as a promising
method to tackle the lack of attack data during ensemble training (Sec. 6).

Availability Statement. We open-source the ensembles’ implementations [15]

and publish the base-1IIDSs’ alerts and experiments as public artifacts [45].

2 Industrial Intrusion Detection and Ensemble Learning

Before assessing whether the fusion of unsupervised IIDSs into an ensemble
is feasible, we provide an introduction to intrusion detection methods in the
ICS domain (Sec. 2.1), datasets, and metrics (Sec. 2.2) that we leverage in our
evaluations. We then lay out the basic principles of ensemble learning (Sec. 2.3).

2.1 Unsupervised Industrial Intrusion Detection

The transition to Internet-connected ICSs establishes new paths for cyberat-
tacks [4], where attackers can, e.g., manipulate sensors or actuators to cause
harm [42,50]. Since ICSs are usually operated for decades without major down-
time, retrofittable security measures are desirable [47]. To this end, IIDSs closely
monitoring the physical behavior of an ICS can report even subtle deviations to
an operator. As ICSs feature regular and repetitive patterns, IIDSs make great
use of temporal coherences in this data for attack detection [5,22,29,46].

The methodologies followed in research to implement intrusion detection can
broadly be classified into supervised and unsupervised IIDSs [2]. Supervised
approaches rely on benign and malicious training data, which in return yields
high detection rates [2]. However, not only is obtaining attack samples for the
target ICS difficult [6], but supervised IIDSs are also prone to merely detecting
those attacks presented to them during training [24] and thus fail to succeed on
zero-day attacks. Unsupervised IIDSs, in contrast, require only benign training
data and can thus indicate any deviation from the learned normality model [8].
Despite being prone to emit more FPAs, their promise to detect any attack
violating normal behavior regardless of attack samples resembles a key feature
for ICS.

Looking closer at how unsupervised IIDSs function, we present eight ap-
proaches from related work. The first approach (Invariant) [14] proposes a
method to derive invariants that must be fulfilled by the ICS at all times, e.g.,
if the water level of a tank is rising, its inlet valve must be open. In contrast,
PASAD [5] leverages a singular spectrum analysis to distinguish deterministic
ICS behavior from non-determinism induced by attacks. Seq2SeqNN [22], which
trains a neural network, and TABOR [29], based on timed automata, both alert
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deviations from the model’s predicted ICS behavior. Lastly, Wolsing et al. [46]
presented four lightweight approaches, i.e., minimum and maximum range checks
(MinMaz), the detection of steep in- and declines (Gradient) as well as frozen
physical values (Steadytime), and unnatural distributions of process data (His-
togram). These eight IIDSs build the foundation for our subsequent analyses.

2.2 Evaluating Industrial Intrusion Detection Systems

In the ICS domain, researchers leverage specialized datasets [10,21] to prove their
IIDSs’ capabilities. The eight ITDSs considered in this publication have originally
been designed for and evaluated on the SWaT [19] or WADI [1]| datasets, which
are predominantly used in the IIDS domain [10]. Those datasets are specifically
suited to evaluate unsupervised IIDSs as they ship with a large training part of
benign-only data and another testing part containing several cyberattacks. In
total, SWaT, which models a water treatment plant, contains 36 cyberattacks,
and WADI, which represents a water distribution testbed, contains 14 attacks.
Besides datasets, metrics play an important role in judging an IIDS’s perfor-
mance. However, since attacks against ICSs and their effects can last for a certain
time, point-based metrics (e.g., accuracy, precision, recall, or F1 score) are heav-
ily skewed in this case as they score more points to longer attacks than (several)
shorter ones [17,20]. To cope with these issues, newer metrics implementing
time-aware variants of precision, recall, and F1 score were recently proposed,
with the enhanced time-aware (eTa) metrics [20] emerging as a promising idea.
For these reasons, we refer to the time-aware metrics eTaP (precision), eTaR
(recall), and eTaF1 (F1) in our evaluations and, in addition, rely on the fol-
lowing two metrics from related work [29,46]: First, FPAs counts the number of
continuous alerts that do not overlap with any attack. Second, detected scenarios
(Scen.) enumerates how many continuous attacks from the dataset are detected.
Together, these metrics promise accurate insights into the IIDSs’ performance.

2.3 Ensemble Learning

Instead of proposing and evaluating new IIDSs, leveraging multiple IIDSs side-
by-side can be another path to more secure ICSs. In this regard, ensemble learn-
ing represents a subfield of machine learning concerned with the process of train-
ing multiple classifiers, i.e., IIDSs, and fusing them into a single model to increase
predictive performance [38,49,51] as proven successful in, e.g., the fields of com-
puter vision [26] or biometric recognition [39]. The methods followed in the lit-
erature can be roughly divided into homogeneous and heterogeneous ensembles.
Since homogeneous ensembles combine the same type of classifier, i.e., only Sup-
port Vector Machines (SVMs), they are rather suited to create monolithic IIDSs,
as demonstrated before [9,23,30,31,35,48]. In contrast, heterogeneous ensembles
combine diverging approaches. Considering the diversity of IIDSs proposed in the
literature (cf. Sec. 2.1), our paper focuses on heterogeneous ensemble learning.
The general methodology for heterogeneous ensemble learning is visualized in
Fig. 1. First, a set of base-classifiers is pre-trained on a training dataset. Then,
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Fig. 1. With ensemble learning, a combiner joins the output of several base-classifiers
into a single decision. In the case of learning-based ensembles, an additional training
step on the outputs of the base-classifiers and the expected outcome may be necessary.

their outputs are fed into a combiner which fuses them into a single classifi-
cation. More precisely, the input of the combiner is a judgment of each IIDS,
whether it has identified an alert (1) or classifies the situation as benign (0) for
the current data point. For a set of n IIDSs, the algorithm receives an alert vec-
tor v € {0,1}". Hereby, the combiner can either be learning-based, i.e., stacking
machine-learning classifiers trained over a dataset, or rule-based, e.g., weighted
voting to combine binary outputs [32,51]. According to best practices [37,52],
a learning-based combiner must be trained on out-of-sample data for the base-
classifiers, which can be achieved, e.g., by splitting the dataset into separate
train sets for base-classifiers and combiner. When measuring the combiner per-
formance, the evaluation must be conducted on a set of previously unseen data.

Lastly, although ensembles promise to improve detection performance, they
can hinder interpretability [40] or accountability [13], i.e., they complicate re-
constructing why an alarm is emitted, which is important for attack mitigation.

3 From Monolithic IIDSs to IIDS Ensembles

Given the tremendous efforts invested in designing IIDSs (cf. Sec. 2.1), ICS op-
erators must decide which conceptual approach they adopt by weighing all pro-
posals based on their capabilities. However, this decision can be difficult as prior
work raised the suspicion that no optimal IIDS exists that detects sufficiently
many attacks [12,46]. To confirm this claimed insufficiency, we analyze eight
IIDSs in Sec. 3.1. We then examine to which extent related work on ensemble
learning can provide a solution (Sec. 3.2) and identify three unique challenges for
unsupervised ensemble learning that inhibit its immediate adoption (Sec. 3.3).

3.1 Insufficiency of Monolithic Detectors

To study the capabilities of the eight IIDSs (cf. Sec. 2.1), we leverage open-source
implementations of them [47] and evaluate them on the SWaT dataset?. Given
the results from Tab. 1, we can confirm the IIDSs’ insufficiency, as no single
approach detects all 36 cyberattacks (cf. Scen.), yet 33 would be detectable

4 The results for a second dataset (WADI) are compiled in Appx. A.
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Table 1. These eight approaches from relevant literature to detect cyberattacks high-
light that relying on a monolithic IIDS introduces risks, as none of them detects all
attacks. Moreover, determining the “best” IIDS heavily depends on the chosen metric.

IIDS (Baseline) eTaP eTaR eTaF1l Scen. FPAs

Invariant [14] 547 208 386 30 217
PASAD [5] 160 4.9 75 16 14
Seq2SeqNN [22] 42.8 472 44.9 26 37
MinMax [46] 67.8 471 556 23 9
Gradient [46] 20.5 6.0 9.2 25 64
Steadytime [46] 81.6  30.1 44.0 14 4
Histogram [46] 70.9 23.2 34.9 13 0
TABOR [29] 491 189 273 19 28

Attacks [[[]] [ 1] Il
Invariant

PASAD || | I i1 Il
Seq2SeqNN |

MinMax | I I | il

h I
Histogram
TABOR [ |
T T T T T

Gradient
Steadytime
T T T T T
0.0 12.4 24.8 37.2 49.6 62.0 74.4 86.8 99.2 111.6 124.0
Elapsed Time [hours] Il Attack/Alert [llUndiscovered Attack [llFalse Alert]

Fig. 2. The alerts emitted by IIDSs on the SWaT dataset exemplify the challenges
operators face during investigations, as they each exhibit distinct alerting behavior.

in combination. Moreover, across the five metrics introduced in Sec. 2.2, no
monolithic IIDS performs best in more than one of the metrics (cf. grey cells
in Tab. 1), indicating that certain compromises towards one or another metric
have to be made by operators selecting an IIDS for their ICS. More precisely,
while the Invariant IIDS excels in detected scenarios, thus likely unveiling most
cyberattacks, it fares badly concerning FPAs (217). On the contrary, Histogram
detects the fewest cyberattacks but also yields no FPAs, resulting in reliable
indications that can counteract the risk of alarm fatigue. Both extremes seem
undesirable for deployment, and a trivial combination, e.g., with a logical OR,
would enable great detection yet add up all the FPAs from both approaches.
Aside from detection performance, the alerts should be accountable to ICS
operators to initiate appropriate countermeasures [13,40]. Yet, when visually
analyzing the alerts (cf. Fig. 2), we observe how differently these IIDSs indicate
attacks. E.g., MinMax produces nine FPAs occurring near the actual attacks,
which is in stark contrast to Invariant spreading alarms even across broad regions
of benign behavior. This qualitative difference is not expressable with current
metrics. Contrarily, PASAD, and Histogram exhibit a different phenomenon of
“overhanging” alerts (red) after the attacks, which complicates determining the
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actual range of an attack. Given these distinct behaviors, truly understanding an
IIDS’s alerts requires expert knowledge of the underlying detection mechanism.

Takeaway. We observed that IIDSs have complementary strengths and op-
posing weaknesses. Thus, relying on a single IIDS can yields suboptimal ICS
security. Furthermore, it increases the burden for operators, who must select an
IIDS that best fits their deployment, as a trivial ensemble, where all alerts are
simply ORed, would better detect attacks yet likely suffer from an excessive mul-
titude of FPAs. This disappointing situation motivates looking for ensembles that
cleverly combine the advantages of multiple IIDSs (cf. Sec. 2.3) to (i) improve
the detection capabilities and (ii) make alarms generally more comprehensible.

3.2 IIDS Ensemble Learning in Related Work

In the past, the idea of ensemble learning has already been used to fuse (smaller)
detection concepts into a final IIDS [3,22,29,36]. As an example, TABOR [29]
fuses three detection methods together. Likewise, Seq2SeqNN [22] trains one
neural network for each ICS process stage (six for SWaT), and only a single model
has to emit an alert. Al-Abassi et al. [3] use decision trees to stack the results of
multiple neural networks. Lastly, Radoglou-Grammatikis et al. [36] combine two
IIDSs, tasked to detect known and unknown attacks respectively, using a logical
OR. While such approaches fall into the category of rule-based ensembles, they
aim to establish a monolithic IIDS rather than complex ensembles.

Still, more complex ensemble learning has also been examined for IIDS appli-
cations: Kus et al. [25] analyzed the impact of several methods covering voting
and stacking to join seven supervised IIDSs, such as Random Forests (RFs) or
SVMs, but only achieved marginal improvements below 1% in the F1 score.
Likewise, Upadhyay et al. [44] combined six supervised IIDSs with majority vot-
ing achieving similar results. Gao et al. [16] combined two deep learning models
using a stacked Multi-Layer Perceptron (MLP) with improvements in F1 score
of only up to 0.41 %. Nguyen et al. [34] combined three classifiers using stacking
with an MLP. They achieved an increase of 0.14 % in F1 score but had little room
for improvement in the first place as the best base-classifier achieved an F1 score
of 99.58 %. Li et al. [27] combined three classifiers using majority voting to in-
crease accuracy by up to 1.62 %. Lastly, Balaji et al. [7], who experimented with
Logistic Regression (LR) as ensemble method, conclude that they rather learned
attack signatures and leave unsupervised learning to future work. However, to
date, comparable research on unsupervised IIDS ensembles is still missing.

3.3 Challenges for Unsupervised IIDS Ensembles

In related work, ensemble learning managed to achieve only slight improvements
(around +1% in F1 score) in the IIDS context, likely due to small margins
within the used base-IIDSs. In our baseline results from Tab. 1, however, we
observed grossly different behaviors and IIDSs distinctly detecting attacks, in-
dicating much greater potential for ensembles to work with.
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Notably, most related work from the IIDS domain considers supervised en-
sembles [16,25,27,34]. This severe limitation introduces the risk of only detecting
the trained attacks [24], effectively transforming unsupervised base-IIDSs back
into a supervised IIDS. Moreover, given their reliance on attack data during
training which is scarce in the ICS domain [6,10], the standard methodology
used to train (and evaluate) such supervised ensembles is incompatible with
unsupervised training, which is imperative in the ICS domain. To this end, we
explain the three challenges (C1-C3) pertaining to the current methodology.

Cl—Benign training only. Unsupervised IIDSs train exclusively on be-
nign data, eliminating the need for attacks in the training set. This property
enables them to detect zero-day attacks [41] and simplifies their training, as
benign data can be recorded during normal ICS operation and is, therefore,
abundantly available, while attack data is rare and difficult to obtain [6]. While,
in the ICS context, the ensemble’s base-IIDSs could still be trained on benign
data, ensemble learning usually remains dependent on observing the IIDSs under
benign and attack conditions (cf. Sec. 3.2). This limitation effectively rules out
the types of learning-based ensembles discussed in related work.

C2—Sequential data series. One property of IIDSs critical for their suc-
cess is the ability to analyze dependencies in sequential data series (cf. Sec. 2.1).
E.g., Seq2SeqNN accumulates the drift between predicted and observed behav-
ior, detecting even subtle deviations [22]. Thus, the input data must be ordered
chronologically, making the standard methodology from related work to ran-
domly shuffle and split datasets into training and evaluation parts [16,25,27,34]
infeasible for unsupervised IIDS ensembles as it alters a data series’ order.

C3—Temporal dependencies. Another temporal effect is that cyberat-
tacks persist over a longer period, e.g., to thwart detection by inflicting the
damage slowly [5]. Since the effects may not happen instantaneously, an IIDS
may detect attacks with some delay. For example, one base-IIDS might detect
the attack at an early stage while a second IIDS requires more time, such that
their alerts do not overlap. This issue demands time-aware ensembles which are
capable of correlating both alerts to one attack. Yet, current ensembles base
their decisions on a single data point without considering recent history, and no
methods that take advantage of such temporal dependencies are known to us.

Takeaway. Due to their individual inefficiencies, a single IIDS is not enough
for strong ICS cybersecurity. However, ensemble learning promises to transfer
precisely this diversity into an advantage, albeit existing ensemble methodologies
turn out infeasible because of unsupervised IIDSs’ unique requirements.

4 The Potential of Unsupervised Ensembles

As established learning-based ensemble methods are inapplicable to the unsuper-
vised IIDSs predominantly used in ICSs (cf. Sec. 3.3), novel ways to fuse IIDSs
into ensembles are required. First, we examine weight-based voting schemes and
measure their maximal potential in Sec. 4.1 to establish a theoretical baseline. We
then study to which extent this potential can actually be leveraged in Sec. 4.2.
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4.1 Potential Analysis of Weight-based Ensembles

Ensemble methods for unsupervised IIDSs have to fulfill a new set of criteria
compared to related work relying on supervised training (cf. Sec. 3.3). For our
first potential analysis, we consider voting mechanisms, an approach that is not
dependent on attack data for training and retains the temporal order of the data.

Design. As the first step, we train every base-IIDS on benign data for the
target ICS such that, when presented with new data, we obtain an alert vector
v encoding the judgment of each IIDS. Next, the ensemble assigns an individual
weight w € R™ to each IIDS. Then, a combined alert is emitted if the weighted
sum of IIDS outputs meets a threshold t € R, i.e., v1 - wy + ... + v, - w, > t.

The crucial part is finding suitable weights w and a threshold ¢ which can
either be achieved manually to implement strategies such as majority votes, or
derived from knowledge of previous deployments. Consequently, this ensemble
method does not necessarily require training (C1). Moreover, it leaves the data
series intact (C2) yet does not consider temporal dependencies (C3).

Selecting a Baseline. Before exploring this ensemble method’s potential, we
must define a baseline for comparison. However, as apparent from our previous
study, an IIDS can be optimized for certain objectives, e.g., to perform well in
a particular metric (cf. Sec. 3.1). This decision is also heavily influenced by how
FPAs and the risk of missing an attack are weighted by researchers (or opera-
tors), which is why finding one suitable metric is difficult in general [20,22,29,46].

Consequently, we decided to compare our ensembles against two promising
IIDSs from the baseline. Given the results from Tab. 1, we select the MinMax
IIDS as our primary baseline since it features the best eTaF1 score, which is a
tradeoff between good precision and recall. In addition, we compare the results
against the Invariant IIDS as it exhibits the most detected scenarios but also
the most FPAs to investigate how the ensembles cope with this input condition.

Results. To examine the theoretical potential achievable with this methodology
in the first step, we leveraged an optimization algorithm to systematically search
for optimized weights and thresholds (Opt. Weights). To this end, we leveraged
Ray Tune [28] to optimize these parameters for the eTaF1 metric. Note that
weights and the threshold were searched within the interval [—1, +1] instead of
the entire R w.l.o.g. (any weighted vote can simply be scaled such that all the
parameters are within any arbitrary non-empty interval in R). We now examine
results on the SWaT dataset and detail the results on WADI in Appx. A.

A weight-based ensemble with optimized parameters manages to outperform
any base-IIDS in eTaP, eTaR, and eTaF1 (cf. upper part of Tab. 2). Surpris-
ingly, MinMax’s eTaF1 score is exceeded by over +11% points, which is a major
improvement, especially considering related work yielded improvements of only
around +1% point (cf. Sec. 3.2). Aside from Invariant, this ensemble detects
the most scenarios, namely 29 of the 33 attacks alerted by any base-IIDS. While
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Table 2. IIDS ensembles have the potential to yield better results than any monolithic
approaches (cf. Opt. Weights). But, to find these weights via means of trivial strategies
(lower part), a tradeoff between detected scenarios and FPAs has to be made.

SWaT eTaP eTaR eTaF1 Scen. FPAs
MinMax [46] 67.8 47.1 55.6 23 9
Invariant [14] 54.7  29.8 38.6 30 217
Opt. Weights (eTaF1) 82.3  56.1 66.7 29 11
Any 21.1 35.3 26.4 33 160
>2-Alerts 48.3 36.5 41.6 30 68
>3-Alerts 61.6 35.3 44.9 26 60
Majority 82.4 34.4 48.5 17 34
>5-Alerts 87.1 23.0 36.4 14 16
All 85.5 2.9 5.6 4 0
Attacks H || L
Opt. Weights (eTaF1)
Any || Nl Rl | ‘
>2-Alerts
>3-Alerts
Majority
>5-Alerts
All

00 124 248 372 496 620 744 868 992 1116 1240
Elapsed Time [hours] lllAttack/Alert IlUndiscovered Attack [llFalse Alert|

Fig. 3. Simple ensemble strategies drastically improve the understandability of alerts
compared to the patterns shown in Fig. 2. Even though strategies like >2-Alerts mea-
sure 68 FPAs, these reside within the vicinity of attacks.

this ensemble still exhibits 11 FPAs, they are confined to the vicinity of actual
attacks (cf. upper part of Fig. 3). More importantly, the ensemble’s alerts do
not show any phenomena discussed in Sec. 3.1, i.e., overhanging or randomly
distributed alerts are eliminated, drastically improving understandability.
When analyzing the optimized weights, it is unsurprising that MinMax, with
the highest eTaF1 score among the base-IIDSs, received the highest weight with
0.99 and could already yield an alert on its own since ¢ = 0.99. The ensemble can
even make use of Invariant with a weight of 0.88 despite its FPAs. Interestingly,
some IIDSs received negative weights (Gradient with —0.33 and PASAD with
even —0.91). Since PASAD, in some cases, does not cover any attack at all (cf.
Fig. 2), the ensemble seems to leverage this phenomenon to filter out FPAs.

4.2 Finding Parameters for Weight-based Ensembles

Our theoretical results prove that weight-based ensembles are of practical use
given a set of suitable weights and a threshold, but they do not provide ways
to find such a configuration in a practical manner. Since performing such an
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optimization is infeasible in practice due to a lack of training data (C1), we now
investigate six straightforward strategies to choose those parameters manually.

Manual Strategies. The most basic strategies we can implement with weights
are All and Any, which emit an alert if all/any IIDSs emit an alert at the same
time (corresponding to a logical AND or a logical OR). To realize them, setting
all weights to 1 and the threshold to ¢ = 1 (Any) or ¢t = n (All) is sufficient.
Applications of these strategies can already be found in literature (cf. Sec. 3.2).

In between these extremes, further combinations are imaginable. For our
evaluation, we consider just a subset of these combinations for the sake of sim-
plicity: We define four more strategies that raise an alert when the Majority of
IIDSs emit an alert or at least two, three, or five alerts are present. Note that
these manual strategies can all be implemented with the proposed method, e.g.,
again setting all weights to 1 and ¢ = n/2 corresponds to the Majority strategy.

Results. Overall, the results from such simple configurations cannot keep up
with the optimized performance (cf. lower part of Tab. 2). When considering the
trend of detected scenarios and FPAs from Any to All, these strategies suffer from
being too conservative in either eTaP (precision) or eTaR (recall). While Any
indicates all 33 detectable attacks and All has no FPAs, they perform worse in
the respective opposite metrics. Moreover, none of the trivial combiners manage
to improve the eTaF1 score compared to the single-best base-IIDS MinMax.
Fortunately, when digging deeper into the ensemble results by visualizing
their alert patterns in Fig. 3 (lower part), all approaches, besides All and Any,
score reasonably well on SWaT when evaluated qualitatively. Their alerts visu-
ally coincide with the attacks, and the FPAs are in close proximity to the actual
attacks, notably eliminating Invariant’s many randomly distributed FPAs. Com-
pared to the original base-IIDSs’ alerts from Fig. 2, even these straightforward
ensemble strategies yield a usable result that can improve the perception for the
ICS operator. However, this observation is not backed by current metrics.
Takeaway. Weight-based ensembles successfully increase the performance
by up to +11% points in eTaF1 on the SWaT dataset. For the WADI dataset,
we yield similar results (cf. Appx. A). Here, an ensemble with optimized weights
can improve the eTaF1 score by nearly +12% points and even detects one more
scenario than any base-IIDS. However, finding suitable parameters is non-trivial
in the absence of training data because simple strategies, such as a Majority
voting, leave a significant gap toward the optimum. Still, the advantages of
weight-based ensembles lie in their simplicity, e.g., that parameters can be tuned
manually throughout the operation, and their ability to reduce FPAs effectively.

5 Time-aware Ensemble Learning

One property of IIDSs that could impair the success of actual unsupervised
ensembles may be temporal effects (cf. C3). While recent metrics, such as eTaF1,
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Fig. 4. This close-up reveals the individual alerting behavior of different IIDSs. How-
ever, by not considering temporal correlations, an ensemble cannot differentiate be-
tween, e.g., Invariant’s short alarms that usually indicate FPAs and longer true alarms.

are already time-aware, i.e., they can deal with IIDSs that alert at different times
during a longer attack, to the best of our knowledge, ensemble learning currently
focuses solely on single instances without temporal dependence. To shed light on
this issue, we first examine the alerting behavior of the IIDSs (cf. Sec. 5.1) and
identify the potential for optimizing their alerts by taking temporal correlations
into account (cf. Sec. 5.2). We then assess to which extent novel concepts of
time-aware ensembles could improve the current situation (cf. Sec. 5.3).

5.1 Individual Alerting Behaviors Complicate Ensembling

Calculating optimal weights resulted in rather unexpected behavior (cf. Sec. 4.1):
Gradient was given a negative score (—0.33), even though it visually performs
nearly optimal (cf. Fig. 2). On the contrary, Invariant received a high score
(40.88), despite exhibiting 217 FPAs. To understand the roots of these outcomes,
Fig. 4 provides a close-up of a few attacks and corresponding alerts.

Starting with MinMax, whose alerts are occasionally flagged as FPAs, these
simply seem delayed such that a trained ensemble or an operator knowing this
phenomenon could still use these indications for attack detection, especially if
other IIDSs indicate attacks around the same time. Likewise, Gradient precisely
indicates discontinuities at an attack’s beginning and end. But, its second alert
is often counted as FPA as the attack has ended at that time instance and is no
longer labeled as malicious in the dataset [46]. Next, although hardly recogniz-
able in Fig. 4, Invariant’s FPAs, which occur randomly during benign regions,
are usually short, i.e., lasting just a few seconds, compared to true alarms. Thus,
Invariant can achieve a score of 0.81 in the point-based F1 score as these short
alerts do not carry significant weight in that metric. The same effect can be
observed for TABOR where FPAs are often just one second short.

Such effects pose issues to ensembles without temporal knowledge, as they can
hardly distinguish different types of alarms. Yet, knowing such (often technically
conditioned) effects provides unique opportunities for stronger ensembles.
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Table 3. Incorporating temporal knowledge about the individual IIDSs’ alerting be-
haviors not only improves their respective detection performance (upper part) but also
significantly reduces the FPAs in an ensemble (lower part).

IIDS /Combiner eTaP eTaR eTaF1 Scen. FPAs
g Invariant [14] 90.37356 28.071% 42.8%*2 13717 10727
S MinMax [46] 64.27%7 438733 520735 g4tt 178
& Gradient [46] 4571252 37 4T3L5 41 189 ggtl 9762
. TABOR [29] 50.5T14 18,9700 275102 19t0 9719
2 The other base-1IDSs remained unaffected.

Opt. Weights (eTaF1) 87.2T49  57.0T09 69.0722 287! 67°
, Manually selected weights® 72.77%¢ 60.37%* 65.97%% 29%° 37
= Any 22.0199 336717 26.6102 3271 40120
& >2-Alerts 50.9%26 42358 452%46 9971 15753
y >3-Alerts 65.4738  41.9%65 511161 o571 7753
-~ Majority 83.210-8 347103 48 9t04 171 728

>5-Alerts 88.6T1:5 289752 49gt64 13-1 57l

All 67.07185 3.9TL0 7 gtLT 40 F0

Superscript numbers show the difference between the prior baseline (Tab. 1) and results (Tab. 2).

5.2 Time-aware Ensemble Learning on Normalized Alarms

Our initial attempt to leverage this time-aware information in ensembles is to
introduce a postprocessing step per IIDS right after each IIDS has emitted its
alerts. Thereby, we can implement simple strategies that “‘normalize” the alerts
prior to forwarding them to the ensemble method for decision-making.

In our case study in Sec. 5.1, we identified four strategies for MinMax, Gra-
dient, Invariant, and TABOR, which help to clean up their alerts. For MinMax
and Gradient, we simply extend their alerts artificially by one minute such that
scenarios are detected if the alert is just slightly off. For Invariant, which suffers
from randomly placed short alerts, we only consider those alerts where an alarm
is emitted for more than ten consecutive seconds. We chose a similar approach
for TABOR, where we filter out every alert that lasts just one time instance.

Incorporating temporal information into ensembles may help obtain better
models and ultimately reduce the number of FPAs due to “misinterpretation”. In
practice, IIDS authors can provide guidance to aid in developing such strategies.

5.3 Potential of Time-aware Ensemble Learning

To assess the potential of time-aware ensembles, we applied these strategies in
isolation for each of the four IIDSs: Invariant, MinMax, Gradient, and TABOR.

As shown in the upper part of Tab. 3 (New Baseline), this approach drasti-
cally improves their performance. Compared to the previous baseline, MinMax

® During experiments, we found an ensemble exceeding the eTaF1-optimized solution
in Scen. and FPAs, indicating that eTaF1 does not fully coincide with subjective
intuition.
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now correctly identifies one additional scenario and reduces the total number of
FPAs by eight. The same observation holds for Gradient, which even reduces the
FPAs by 62 and can increase its eTaF1 score by 31.9 % points. These results indi-
cate that most FPAs of MinMax and Gradient were in close proximity to actual
attacks or triggered during the recovery of the ICS right after the attack. The
strategies for Invariant and TABOR likewise yield a reduction in FPAs but also
in the detected scenarios (in the case of Invariant). We assume that the reduction
of detected scenarios for Invariant results from the filtered random alerts, which
may have (falsely) contributed to the high number in the first place.

This improvement is not restricted to the base-IIDSs as it carries over to
the ensembles, which now fare better using these “normalized” alerts (cf. New
Results in Tab. 3). The optimized weight-based ensemble can slightly increase
the eTaF1 score (+2.2) and reduce the FPAs by five. More importantly, the sim-
ple strategies with manually chosen weights now become usable as they feature
a similar amount of FPAs compared to the optimized results, yet with slightly
fewer detected scenarios. In that regard, the strategy > 3-Alerts lacks behind the
optimum, with just three fewer detected scenarios and one more FPA, signifi-
cantly closing the gap between practically achieved and theoretical performance.

Takeaway. Temporal knowledge inside ensembles substantially improves
their performances to a point where manual strategies become actually usable.
Besides incorporating IIDS-specific information, future time-aware ensembles
considering inter-IIDS alert dependencies may even exceed our initial results,
but likely require sophisticated methods of finding (or training) an adequate
model.

6 A Chance for Learning-based Ensembles

Until now, we evaluated the potential of IIDS ensembles on a single dataset.
But one advantage of unsupervised IIDSs is that they can operate in different
environments, i.e., generalize to new industrial domains after another training
phase [47]. E.g., MinMax, Gradient, Steadytime, and Histogram have been de-
signed, trained on, and evaluated for three datasets originating from different
domains [46]. Given that the set of base-IIDSs remains fixed, training a learning-
based ensemble on one dataset (or in the lab) under attack conditions and then
transferring the ensemble’s model to a different deployment/dataset without
known attacks might be feasible. While it remains necessary to retrain the base-
IIDSs on the new scenario, it hopefully suffices to keep the ensemble’s model, i.e.,
the way in which the detection results are aggregated. This transfer-learning [43]
is still in line with C1 as only the unsupervised IIDSs would require retraining
on benign-only data, while the pre-trained ensemble model is simply reused.
Transfer-learning promises a new level of flexibility for ensembles and may
circumvent the issue of finding appropriate weights identified in Sec. 4.2. Also,
it enables leveraging methods from related work such as ensemble stacking (cf.
Sec. 3.2). To examine the feasibility of ensemble transfer-learning, we explain our
new methodology in Sec. 6.1 and subsequently present the results in Sec. 6.2.
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Table 4. Transfer-learning proves helpful in training unsupervised IIDS ensembles.
E.g., if trained on the dataset SWaT and applied to WADI, most ensembles outperform
the manual strategies (cf. Majority) in eTaF1 and come close to the Opt. Weights.

Transfer-learning eTaP eTaR eTaF1l Scen. FPAs
= Opt. Weights (Tab. 3) 87.2 57.0 69.0 28 6
S >3-Alerts (Tab. 3) 654 419  51.1 25 7
92 WADI’s Opt. Weights (eTaF1)  75.1  33.8 46.6 18 11
z SVM [25] 76.6 431  55.2 21 12
A MLP [16,34] 75.9 55.5 64.1 27 18
§ LR [25] 80.5 492  61.0 25 13

Heuristic [25] 68.3 385 49.2 20 17
—  Opt. Weights (Tab. 7) 86.9  62.2 72.5 11 2
2 Majority (Tab. 7) 79.8 421 551 7 2
= SWaT’s Opt. Weights (eTaF1)  76.6  50.4 60.8 10 2
T SVM [25] 713 635 672 11 9
= MLP [16,34] 80.2 635 709 11 3
% LR [25] 88.0 426 574 9 1

Heuristic [25] 76.7 60.2 67.4 11 6

6.1 A New Methodology for Learning-based Ensembles

Learning-based ensembles require training on a dataset of exemplary attacks and
expected labels of the outcome. Therefore, the methodology leveraged across
related work usually bases on a single dataset artificially split into training and
evaluation parts. Since we target an unsupervised scenario, we cannot assume
to observe the ensemble’s IIDSs under attack conditions in the target ICS (C1).
However, assuming that the same set of base-IIDSs behaves similarly in a
different ICS, operators may have a strong interest in reusing a well-performing,
pre-trained ensemble model. On the one hand, this approach enables assessing
how well weights optimized for one scenario transfer to another ICS and, thus,
helps to find these weights. On the other hand, supervised learning-based en-
sembles, which we neglected so far, may generalize too, such that approaches
from related work can be leveraged even in the context of unsupervised ITDSs.

6.2 Putting Transfer-learning to the Test

To test the idea of transfer-learning, we leverage the SWaT and WADI datasets
to which all eight base-IIDSs are applicable [47] and use one of the two datasets
exclusively for training and evaluate the obtained ensemble model on the respec-
tive other dataset. Note that we use the “normalized” alerts according to Sec. 5 in
this experiment to provide cleaner input data. As the first approach, we consider
transferring the parameters of our weight-based ensembles. Furthermore, we an-
alyze four learning-based variants from previous work. First, as leveraged in two
publications [16,34], an MLP resembles a neural network classifier. Further clas-
sifiers include SVM [25] and LR [7,25]. Besides these, Kus et al. [25] proposed a
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heuristic that maps each possible alert vector to its most frequent output (benign
or malicious), thereby optimizing the number of correct classifications.

Under the right conditions, transfer-learning can be an alternative to manual
strategies (cf. Tab. 4). Yet, starting with ensembles trained on WADI and applied
to SWaT (WADI — SWaT), all ensembles emit more FPAs than > 3-Alerts.
Nonetheless, MLP and LR outperform every base-IIDS and all manual strategies
in eTaF1 (cf. Sec. 4.2), falling behind Opt. Weights by just 4.9% points. MLP
even detects two more scenarios than >3-Alerts. Unfortunately, transferring the
weights optimized on WADI to SWaT yields the worst ensemble.

The reverse direction (SWaT — WADI) is more promising. Here, the weight-
based ensemble detects ten scenarios with two FPAs;, close to the optimum (cf.
Opt. Weights). Also, learning-based ensembles perform better. Here, LR features
just one FPA and nine detected scenarios, a great improvement over Majority.
Again, MLP optimizes eTaF1 among all ensembles and exceeds the best base-
IIDS by 12.8 % points, with only three FPAs. To validate whether this success
stems from the larger training data (SWaT contains 36 attacks and WADI 14),
we repeated this experiment by restricting the training data to the first 14 attacks
of SWaT, making it similar to WADI. But, we could not verify this assumption
as the outcomes were similar and differed on average by only 1.05 % points.

Takeaway. Given suitable training data, transfer-learning can be successful.
Yet there is still room for improvement, i.e., by leveraging multiple datasets
for training in the future. Most importantly, transfer-learning can outperform
simple strategies (SWaT — WADI), thus providing an alternative to manually
finding performant ensembles for actual ICS deployments with nearly no FPAs.

7 Conclusion

Enhancing ICSs’ cybersecurity by augmenting them with an unsupervised IIDS
promises to detect even zero-day attacks for which no training data exists. De-
spite a large research community inventing strong algorithms for IIDSs, we have
outlined that relying on a single detector is insufficient given their individual
weaknesses. Thus, we propose to leverage ensemble learning, as, e.g., used in
computer vision, to combine a set of IIDSs and their strengths into one detector.

Surprisingly, we identify significant unused potential to improve not only the
combined detection performance beyond what individual approaches can achieve
but also their alerts’ understandability for ICS operators. Incorporating temporal
correlations into the ensemble’s decisions reduces the number of FPAs further.
Lastly, to ease the process of finding effective ensembles, we consider transfer-
learning, i.e., training ensembles on attacks from a different ICS, to circumvent
the difficulty of accessing training data for a target ICS under attack conditions.

In conclusion, ensemble learning poses an exciting direction for future work
to strengthen ICSs’ cybersecurity by tightly integrating strong methods for in-
trusion detection into an effective solution. To bootstrap ICS-specific research,
we publish the ensembles’ implementations [15], as well as the base-IIDSs’ alerts
and configuration files underlying our evaluations [45] as a dataset.
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A  WADI Results

In addition to the results of our experiments from Sec. 3, and Sec. 4, based on
the SWaT dataset, we repeated the same analyses for the WADI dataset.

Table 5. No IIDS detects all attacks on WADI, and there is no single best detector
that excels in all metrics. Also, the best IIDS for each metric differs from SWaT.

IIDS (Baseline) eTaP eTaR eTaF1l Scen. FPAs

Invariant [14] 92.3 326 48.1 6 3
PASAD [5] 5.4 4.3 4.8 5 3
Seq2SeqNN [22] 454 313 371 9 7
MinMax [46] 74.8 474 58.1 7 4
Gradient [46] 69.6 18.1 28.8 7 12
Steadytime [46] 87.0  38.7 53.5 6 2
Histogram [46] 63.7  43.2 51.5 7 6
TABOR [29] 14.9 130  13.9 8 4

In the baseline results, we observe a similar insufficiency for WADI (cf. Tab. 5)
as previously discussed for SWa'T in Sec. 3.1. No single IIDS is capable of detect-
ing all 14 cyberattacks, and there is no single best IIDS for all metrics. MinMax
achieves the highest score in two metrics, but Seq2SeqNN detects two more
scenarios. In total 13 of WADI’s 14 attacks would be detectable in combination.

We again assess the theoretical and practical potential for an ensemble on
WADI as described in Sec. 4.1. Hereby, the eTaF1-optimized ensemble outper-
forms the best base-IIDS by +11.9% points in the eTaF1 score, detects more
cyberattacks than any IIDS, and keeps the FPAs comparatively low (cf. upper
part of Tab. 6). The manual voting strategies, however, fall short of this theo-
retical potential (cf. lower part of Tab. 6) with the best strategy lacking —25%
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Table 6. Weight-based ensembles yield similar results on WADI as on SWaT (cf.
Tab. 2) and can outperform each base-IIDS in eTaF1. While they have the potential
to improve upon the base-IIDS, finding suitable weights is again non-trivial.

WADI eTaP eTaR eTaF1 Scen. FPAs
MinMax [46] 74.8 47.4 58.1 7 4
Seq2SeqNN [22] 45.4 31.3 37.1 9 7
Opt. Weights (eTaF1) 889  57.7 70.0 10 4
Any 25.5 47.0 33.1 13 14
>2-Alerts 36.2 42.6 39.2 13 4
>3-Alerts 61.2 50.0 55.0 8 10
Majority 85.8 36.4 51.1 7 2
>5-Alerts 89.0 21.4 34.5 5 4
All 0.0 0.0 0.0 1 0

Table 7. As for SWaT (cf. Tab. 3), temporal knowledge improves the individual IIDSs’
alerting behavior (upper part) and the ensembles’ performance (lower part).

Transfer-learning eTaP eTaR eTaF1l Scen. FPAs
2 Invariant [14] 96.6743 32.2704 483701 gt 73
'S MinMax [46] 65.97%°  41.47%° 509772 gfl 173
& Gradient [46] 57.67120 31,6135 4081121 70 379
& TABOR [29] 14.1798 13.0790 135794 g0 173
2 The other base-1IDSs remained unaffected.

Opt. Weights (eTaF1) 86.972° 62.2746 725725 1t 972
2 Any 23.0°2° 43.473% 301730 1370 8°F
2 >2-Alerts 34,6716 40.3724 372719 13%t0  9-2
= >3-Alerts 56.77%*% 437763 494736 gt0 g2
& Majority 79.876:0 42157 55 1t40 g0 90
Z. >5-Alerts 79.07100 271157 40,3758 50 o972

All 100.07100:0 4 1+t g oF80  q+0  F0

Superscript numbers show the difference between the prior baseline (Tab. 5) and results (Tab. 6).

points behind in the eTaF1 score. Nonetheless, the >2-Alerts ensemble indicates
all 13 cyberattacks detected by any base-IIDS while maintaining only four FPAs.

Incorporating temporal knowledge (cf. Sec. 5) enhances the optimum by
+2.5% points in eTaF1 and improves the manual strategies, especially in FPAs
(cf. Tab. 7). We see a substantial improvement in the eTaF1 score of the best
manual vote (+5.8% points for >5-Alerts), and the >2-Alerts strategy still de-
tects 13 cyberattacks, now with just 2 FPAs, matching the number of FPAs
achieved by Opt. Weights. Unfortunately, this great result is not expressed by
eTaF1.

These results support the previous conclusion that weight-based ensembles
are useful given suitable weights and thresholds, yet finding them remains non-
trivial. Lastly, adding time-awareness yielded a significant performance boost.
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