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Abstract. Benchmarking is an essential tool for industrial organizations
to identify potentials that allows them to improve their competitive posi-
tion through operational and strategic means. However, the handling of
sensitive information, in terms of (i) internal company data and (ii) the
underlying algorithm to compute the benchmark, demands strict (techni-
cal) confidentiality guarantees—an aspect that existing approaches fail
to address adequately. Still, advances in private computing provide us
with building blocks to reliably secure even complex computations and
their inputs, as present in industry benchmarks. In this paper, we thus
compare two promising and fundamentally different concepts (hardware-
and software-based) to realize privacy-preserving benchmarks. Thereby,
we provide detailed insights into the concept-specific benefits. Our evalu-
ation of two real-world use cases from different industries underlines that
realizing and deploying secure information systems for industry bench-
marking is possible with today’s building blocks from private computing.

Keywords: real-world computing · trusted execution environments ·
homomorphic encryption · key performance indicators · benchmarking.

1 Introduction

This version of the contribution has been accepted for publication, after peer re-
view but is not the Version of Record and does not reflect post-acceptance im-
provements, or any corrections. The Version of Record is available online at: https:
//doi.org/10.1007/978-3-031-34560-9_29. Use of this Accepted Version is subject
to the publisher’s Accepted Manuscript terms of use https://www.springernature.
com/gp/open-research/policies/accepted-manuscript-terms.

Benchmarking is either a one-time or continuous process of identifying best
practices to improve the performance using indicators [17]. More precisely, in-
dustry benchmarking is an essential tool for businesses to identify potentials by
comparing themselves internally, with partners, or competitors through specific
key performance indicators (KPIs). It provides companies with insights into the
effectiveness of their processes (qualitatively and quantitatively). Further, it al-
lows them to identify processes that are worthwhile to improve to close the gap
between the market leader (best in class) and their own position, e.g., by avoiding
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a waste of resources [17,30]. To this end, we can distinguish between two common
types of industry benchmarks, i.e., internal (involving departments of a single
company) and external benchmarking (comparing multiple companies) [17].

From an information systems’ perspective, benchmarks build on distributed
information systems (ISs) with the goal of improving the overall performance
(expressed through use case-tailored KPIs), within certain peer groups [14].

Overall, we identify three crucial dimensions when designing such systems:
(1) benchmarking frequency (one-time vs. continuous benchmarking), (2) open-
ness of data (i.e., open vs. closed data), and (3) openness of the algorithm (i.e.,
open vs. closed benchmarking algorithms). Traditionally, benchmarks utilized
labor-intensive, manual interviews [17, 23] to collect the required data to com-
pute the defined KPIs by following a fixed algorithm, i.e., we can classify them
as one-time benchmarks that source closed data and a closed algorithm. Data-
driven approaches increasingly evolve toward continuous benchmarking systems,
which might additionally rely on public (open) data and algorithms (e.g., govern-
mental applications). As such benchmarks (open data and open algorithms) do
not require elaborate security mechanisms, they are comparably easy to realize.

However, benchmarks in industry require strong security as they operate on
sensitive (closed) company data using valuable, use case-tailored, and complex
(closed) algorithms. Without sufficient security guarantees, companies fear a loss
of control over their sensitive data, and in turn, of their competitive advantages.
Thus, privacy-preserving benchmarks increase the number of companies willing
to participate, which significantly affects the utility of benchmarks and the rev-
enue of the analyst (the developer of the underlying algorithm). Moreover, such
systems also help to ensure the confidentiality of the algorithm. Thereby, they
protect the analyst’s intellectual property, counteracting potential losses of sub-
sequent compensations through unauthorized and unpaid reuse of algorithms.

Given these confidentiality needs, realizing privacy-preserving industry bench-
marks is challenging. Fortunately, developments in the area of private computing
provide us with two diametric concepts for designing such privacy-preserving
systems. On the one hand, Trusted Execution Environments (TEEs) [27] pro-
vide hardware-based guarantees through dedicated computing enclaves for the
private computation on sensitive data. On the other hand, Fully Homomor-
phic Encryption (FHE) [2] schemes are a software-based approach that enables
privacy-preserving computations on encrypted data without revealing any details
of the computation or its inputs. The question is which direction is best-suited.

In this paper, we answer this question by studying the suitability and ap-
plicability of two diametrical designs to benchmark organizations in industry,
i.e., a hardware-based TEE and a software-based FHE approach, with the lat-
ter basing on our prior work [23]. Using real-world use cases in the domains of
injection molding and global production networks, we evaluate our designs qual-
itatively and quantitatively. These use cases originate from the interdisciplinary
research cluster “Internet of Production” [7,22], which connects researchers from
various domains and more than 30 institutes. Thus, we holistically discuss the
foundations for and implications of such privacy-preserving information systems.
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Contributions. Our primary contributions in this paper are as follows.
– We study two diametrical designs1 that secure ISs for industry benchmarking

with modern concepts from private computing, i.e., using TEEs and FHE.
– We discuss the performance, limitations, and security guarantees of each

design to give an intuition of the real-world implications, i.e., we provide a
holistic overview for practical deployments of such information systems.
Organization. In Sec. 2, we first introduce industry benchmarking, two real-

world use cases, and relevant related work. Subsequently, in Sec. 3, we present
the two diametrical private computing concepts, which we build upon when
describing our two benchmarking designs (Sec. 4). In Sec. 5, we evaluate these
information systems also in light of our use cases before concluding in Sec. 6

2 Company Benchmarking in Industry

The need for privacy-preserving benchmarks motivates us to study existing con-
cepts that promise to secure corresponding information systems. In Sec. 2.1,
we first provide essential aspects of industry benchmarking, its actors, benefits,
and privacy requirements. Subsequently, in Sec. 2.2, we detail two real-world use
cases, which also serve as a basis for our evaluation (Sec. 5), before discussing past
efforts to realize secure and privacy-preserving industry benchmarks in Sec. 2.3.

2.1 Company Benchmarking 101

Industry benchmarking usually focuses on practices such as the company’s op-
erations and the management of a company or a department [19]. The main
objectives are to evaluate the company’s current market position to identify
the gap between the company and a recognized leader, as well as to adapt local
processes to close this identified gap. For example, Xerox, a manufacturer of pho-
tocopiers and document management systems, improved its annual productivity
gains from 3%–5 % to 10% [31] after comparing its processes with L.L. Bean, a
retailer of outdoor sporting goods, and addressing the benchmark’s findings.

Benchmarks operate on key performance indicators (KPIs), allowing for quan-
titative comparisons of products, services, or implemented practices [11, 14].
Thus, we can also understand KPIs as digital shadows [5, 12, 18], i.e., an ab-
straction that represents the companies’ performance. Nowadays, the sets of
relevant KPIs frequently change. For instance, they increasingly cover sustain-
ability, which also allows for comparisons of environmental and social aspects [6].

Fig. 1(a) illustrates the process of benchmarking, including the main actors:
an analyst, the benchmarking service, and participating companies. First, the
analyst develops suitable algorithms to compute meaningful KPIs, which are
usually kept private due to their value and intellectual property [10]. For exam-
ple, the business models of credit scoring agencies, such as Experian or Schufa,
largely depend on the confidentiality of the algorithm. The benchmarking service

1 We open-sourced them at https://github.com/COMSYS/industry-benchmarking

https://github.com/COMSYS/industry-benchmarking
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Fig. 1: Using the algorithm and the companies’ inputs, the benchmarking service
computes all target KPIs, which allows companies to judge their performance.

collects the corresponding inputs from participants and computes the KPIs to
compare them as part of the benchmark. Eventually, the participants receive the
general results and their own KPIs. Companies can then investigate their per-
formance in comparison to the average and “best in class”, as shown in Fig. 1(b).

Previous work [4, 14, 29] frequently outlined the need for confidential KPIs.
The prevalence of closed benchmarking algorithms stresses the need to also pro-
tect the computation of the compared KPIs as it represents the analyst’s compet-
itive advantage who invests significant effort to derive meaningful KPIs [23]. We,
therefore, identify two crucial privacy requirements that need to be considered:
(1) the provided company inputs and computed company-specific KPIs, which
we define analogous to personal privacy as company privacy, and (2) algorithm
confidentiality. Mitigating data leaks is a significant challenge. Accordingly, com-
pany data should not even be accessible to the benchmarking service. However,
neither should the algorithm be public nor (partly) accessible to the companies.

As a further complication, the KPI computation can be very complex in
real-world benchmarks, i.e., a single KPI can be based on several formulas with
dependencies, diverse operations, and hundreds of inputs [23]. Overall, a single
benchmark may consist of up to 200 KPIs [14], thus, demanding computational
resources for its operation. Next, we take a look at two real-world use cases.

2.2 Real-World Use Cases of Company Benchmarking

In this paper, we consider two real-world use cases, which we introduce next.
Benchmarking Companies in Injection Molding (IM). Our first use

case is injection molding as primary shaping: It is widely applicable in different
industries and domains and allows for the processing of complex part geometries
without subsequent rework. The raw plastic material is plasticized by heat and
friction and then injected into the mold, which is the negative of the plastic part
to be produced. After a pre-defined cooling time, the final part can be ejected
from the mold [13]. Given the multitude of steps within a single cycle and their
sensitivity, injection molding is a highly complex process, as shown in Fig. 2(a).

This use case bases on a real-world benchmark from 2014 that still utilized
a centralized, paper-based approach [23] (cf. Sec. 2.3). Back then, companies in
the injection molding industry compared their performance in organizational and
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Fig. 2: Our real-world benchmarking use case in the domain of injection molding
captures the complexity of the production process through various KPIs.

technological aspects to advance or consolidate their positions (cf. Fig. 2(b)).
The underlying algorithm and hence most of the resulting KPIs are highly spe-
cialized for this domain. As we detail in Tab. 1, the complexity of this example is
high, with computations in up to 49 sequential operations, over 600 inputs, and
more than 2700 operations, i.e., the analyst’s effort is significant. In addition to
elementary arithmetic, the KPI computation also sources exponentiation (xy),
roots ( n

√
x), as well as absolute (|x|) and extrema values (min/max). In return,

participants received detailed results due to the large number of KPIs (Fig. 2(b)
highlights some of them). As such, this use case is a representative real-world
example, and it is along the lines of the number of expected KPIs (cf. Sec. 2.3).

This benchmark must be privacy-preserving as it builds on private inputs and
computes sensitive KPIs. Here, prominent examples are data comprising costs
of labor or manufacturing processes. For an in-depth presentation of the setup
and the benchmark itself within this use case, we refer to previous work [23].

Measuring the Efficiency of Global Production Networks (PN). Our
second use case [24] benchmarks the performance of production sites in global-
ized production networks to exemplarily study another setting and a different
type of algorithm. Distributing production sites and supply chains can yield sig-
nificant advantages as the geographic, regulatory, and technological conditions
of each location can be exploited best [32]. However, a competitive advantage is
only given if the beneficial performance is being attested regularly, e.g., through
benchmarks where companies compare their inventory, efficiency, and equipment
over different days, products, and production sites. The data necessary to gen-
erate the KPIs for comparing companies’ production networks requires highly
sensitive company data. Thus, it must be treated confidentially, as it would allow
others to draw conclusions about the corporate strategy and relationships [16].

Table 1: Overview of our two real-world use cases and their algorithm complexity.

Dataset Inputs KPIs Depth
(Max.)

Depth
(Avg.) Formulas Oper-

ations

IM 674 48 49 12 627 2704
PN 35 (n-dim) 14 12 6 14 100
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In this context, benchmarking the performance of individual production sites
is particularly interesting to compare the efficiency of companies or even loca-
tions within a single company. For example, a KPI can express the unit costs
of a product at a specific location for this purpose. By breaking down the unit
product costs, companies can then identify the main drivers, such as the degree
of automation, the wage level, or even the characteristics of the machine park.
In this use case, the product portfolio complexity has been identified as a major
driver of unit costs, which can be traced back to the need to interrupt production
sequences with setup processes, resulting in reduced machine utilization.

In comparison to IM, the underlying algorithm of PN features three inter-
esting differences for the design of an IS: (1) arrays as input values with vari-
able length, which might implicitly reveal sensitive company details, (2) compo-
nent-wise operations on arrays, and (3) summation (Σ) or extrema over arrays.
Hence, despite its small size, with 14 KPIs and 100 operations (cf. Tab. 1), it is
of great relevance for our work due to the complex operations contained within.

With these real-world use cases, we intend to provide a holistic view on the
features any suitable design must adhere to while studying their implications. In
the following, we look at past efforts in realizing secure benchmarking systems.

2.3 Related Work in Securing Company Benchmarks

Traditional benchmarking services utilize a centralized design that digitizes the
paper-based responses of participants before computing the KPIs and compar-
ing them [23]. Apart from their labor-intensive realization, such benchmarking
services conceptually serve as a trusted third party as they have access to all sen-
sitive inputs. Such centralized designs protect the algorithm but fail to account
for the sensitive company inputs (company privacy). In contrast, local computa-
tions by the participants, who only return the computed KPIs, protect sensitive
inputs but fail to account for the required algorithm confidentiality. In a general
direction, advances in privacy-preserving data processing emerge in research [1].
However, they frequently build upon disclosing the algorithms as well. Ongoing
developments in the area of private computing promise to privacy-preservingly
secure industry benchmarks while reliably mitigating this critical drawback.

Software-based Approaches with Private Computing. In related work,
we discover several software-based designs utilizing secure multi-party compu-
tation or homomorphic encryption. The former approaches usually have two
major drawbacks: (1) they are commonly round-based, i.e., all participants
need to participate simultaneously [4, 14], and (2) the scalability is, at best,
quadratic [4,15] in the number of participants. Initial homomorphic encryption-
based approaches [28, 29] come with a limited set of supported operations that
challenge the computation of complex operations directly on encrypted data.
These approaches have in common that they do not consider algorithm confi-
dentiality [23], i.e., they only protect the comparison of KPIs but fail to account
for the sensitivity of the KPI computation (the analyst’s intellectual property).

In 2020, improved FHE schemes allowed us to propose a Privacy-preserving
Company Benchmarking (PCB) [23], which considers both privacy requirements.
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Using FHE-encrypted inputs, PCB locally computes simple operations on en-
crypted data and locally compares encrypted KPIs, achieving company privacy.
While PCB offloads complex computations to the participants, it allows for al-
gorithm obfuscation to probabilistically ensure algorithm confidentiality. In this
work, we refer to an increment of PCB with fewer needs of offloading as SW-PIB.

Hardware-based Approaches. On the other side of the spectrum of pri-
vate computing, we have hardware-based concepts, such as TEEs, which only
emerged after the majority of software-based benchmarking approaches had al-
ready been proposed. The range of applications that utilize TEEs to securely
execute programs is immense, with them also moving toward mobile devices,
such as smartphones, these days. However, we did not discover any approach
that utilizes TEEs to secure industry benchmarks. Thus, in this work and based
on their secure computing enclaves, we study the opportunities hardware-based
designs offer for the secure realization of benchmarking information systems.

3 Preliminaries: Recent Advances in Private Computing

Given the huge potential of private computing for benchmarking information sys-
tems, we now introduce the ideas and variants of the corresponding diametrical
extremes, i.e., hardware- and software-based concepts, in more detail. Afterward,
we study two designs for privacy-preserving industry benchmarking that base on
these fundamentally different concepts to evaluate their practical feasibility.

Trusted Execution Environments (TEEs) [27] shield and protect confi-
dential data and code during the processing via hardware mechanisms that are
implemented in modern CPUs. The core idea is that confidential data and code
remain inaccessible for the untrusted part of the system. To this end, TEEs allow
attesting the hard- and software for validity such that users then share their data
securely with a trusted party. For benchmarking, we can utilize these properties
to protect the inputs and the analyst’s algorithm. Using remote attestation, par-
ticipants can verify the configuration of the system they are sending data to, as
well as details on the software running in the TEE. Intel SGX is a popular and
widely available implementation of this concept, which is also present in com-
modity hardware and today’s cloud environments, such as Microsoft Azure [25].

Fully Homomorphic Encryption (FHE) [2] is a software-based approach
that relies on the homomorphic property of special cryptosystems that allow
for operations on the ciphertext to also be reflected in the plaintext, i.e., FHE
enables computations directly on encrypted data even on untrusted hardware.
Particularly, the widespread adoption of cloud computing contributes to the in-
creasing application of FHE. FHE schemes can have varying cryptographic foun-
dations that differ in terms of supported operations and encrypted data types
(e.g., Booleans, integers, or approximated reals), each with individual overhead
and constraints [2]. After a certain number of operations on a single ciphertext,
ciphertexts need to be refreshed: either interactively using the owner’s key pair
or through (local) bootstrapping. In practice, the ideal design choice depends on
the specific confidentiality needs and availability of computing resources.
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4 Privacy-Preserving Company Benchmarking Designs

We propose two reference designs (Hardware- or Software-based) for Privacy-
preserving Industry Benchmarking (PIB), i.e., HW-PIB and SW-PIB, to study
their suitability for real-world information systems through qualitative and quan-
titative analysis. Apart from the frequently addressed company privacy, our de-
signs also consider algorithm confidentiality (cf. Sec. 2.1). In Sec. 4.1, we provide
a high-level overview to express the general processing steps. Subsequently, we
discuss crucial details of HW-PIB and SW-PIB in Sec. 4.2 and 4.3, respectively.

4.1 Design Overview

The main difference between our designs lies in the underlying private comput-
ing concept (hardware vs. software-based). While TEEs can retain inputs and
computed KPIs of each company within the protected enclave in HW-PIB, SW-
PIB’s privacy proxy only operates on encrypted data, and the statistics server
only has access to aggregates. Designing and evolving the actual benchmarking
algorithms is entirely independent of our designs, which focus on securing the
operation of benchmarking algorithms. Thus, the development of benchmark-
ing algorithms remains unchanged. Conceptually, the logical steps to compute a
benchmark are identical in our designs, and the overall steps are largely compa-
rable. However, the individual realizations differ significantly. Thus, we provide
a high-level description at this point. We visualize both designs in Fig. 3.

In 1○, the participating companies share their inputs with the benchmarking
service. In HW-PIB, the companies send their sensitive data through a secure
(TLS) channel directly into the TEE. In contrast, SW-PIB requires the par-
ticipants to homomorphically encrypt their inputs with their own public keys.
Subsequently, in 2○, using the analyst’s algorithms, the KPIs are computed.
While HW-PIB operates directly on plaintext data within the TEE, SW-PIB
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deals with ciphertexts: Thus, in SW-PIB, depending on the operation, the com-
putation is either A○ performed (locally) on the privacy proxy if supported by
the FHE scheme or B○ it is offloaded to the participant. We refer to offloading
as the process where the participant receives the operation and ciphertext(s)
from the privacy proxy to (1) decrypt the input ciphertext(s), (2) compute the
operation on the decrypted plaintexts, (3) homomorphically encrypt the result,
(4) and return it to the privacy proxy. Thereby, we circumvent the restricted set
of FHE-supported computations on ciphertexts and provide analysts with the
flexibility to include arbitrary operations in the benchmarking algorithms.

Steps 3○ and 4○ are only relevant for SW-PIB as HW-PIB directly oper-
ates on plaintext data within the protected enclave, i.e., no additional security
measures are needed. First ( 3○), the ciphertexts must be re-encrypted with the
statistics server’s key. Depending on the underlying FHE scheme, we can either
utilize proxy re-encryption directly on the proxy or we have to offload the re-
encryption to the company. Second ( 4○), the privacy proxy aggregates the KPIs
of k participants [23] that are all encrypted with the statistics server’s key and
forwards these aggregates to the statistics server, which can decrypt them.

5○– 7○ are again identical for HW-PIB and SW-PIB. The benchmarking ser-
vice derives the KPI statistics ( 5○) and shares them with the companies ( 6○).
Finally, in 7○, companies analyze their results to derive management decisions.

Next, we look at the designs’ specifics and our prototypical implementations.

4.2 HW-PIB: Shielding the Computations

HW-PIB, our hardware-based design, utilizes TEEs to process the companies’
sensitive inputs while preserving confidentiality. The design builds on the isola-
tion property of TEEs together with memory encryption and storage sealing to
restrict the access to sensitive information to software within the enclave.

Setup. Since the enclave has access to company inputs as plaintext data,
the setup first needs to establish trust between the running enclave, the ana-
lyst, and participating companies. This trust includes (a) the correct and benign
functionality of code running inside the enclave and (b) that the enclave actu-
ally runs the intended software on a trustworthy platform. We resolve (a) by
open-sourcing the enclave code, such that any interested entity can verify its
functionality, and (b) via remote attestation by a trusted certificate authority.
Upon successful attestation, it issues and signs an enclave-specific certificate.
This certificate serves as an enclave identifier and proves successful attestation
to all entities who connect via a secure channel. The analyst and the companies
then provision the enclave with their configuration and data ( 1○), respectively.

KPI Computation. Due to the use of a trusted enclave, the TEE may
have access to all data in plaintext. Hence, HW-PIB locally supports arbitrary
complex operations ( 2○) and does not require any offloading. The TEE’s mem-
ory encryption ensures that the input and all intermediate computation results
remain confidential, i.e., they are only accessible by/within the enclave itself.

Aggregation. Due to HW-PIB’s computations on plaintexts, it does not
require any preparatory aggregation steps ( 3○– 4○). Instead, HW-PIB directly
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calculates the KPI statistics ( 5○). Together with their individual KPIs, in 6○,
the general statistics are sent to the companies via TLS. Afterward, the enclave
may terminate to ensure that any data and the KPIs are no longer accessible.

Remarks. As a hardware-based design, HW-PIB depends on a TEE-enabled
cloud server, which various vendors offer. In this work, we utilize Intel SGX.

4.3 SW-PIB: Realizing Oblivious Computations

Now, we focus on the specifics of SW-PIB and the implications of utilizing FHE.
Setup. During the setup, the analyst (cf. Fig. 1) configures the privacy

proxy (by sharing the algorithm and configuring k). Moreover, the statistics
server generates an FHE key pair that is used to compute the aggregates in 4○.
Finally, each participant must generate an FHE key pair as well (used in 1○– 3○).

KPI Computation. To ensure algorithm confidentiality, the privacy proxy
tries to compute as many operations on ciphertexts as supported locally ( A○).
The support for complex operations (i.e., beyond +,−, and ·) depends on the uti-
lized FHE scheme. Accordingly, unsupported operations need to be offloaded to
the client ( B○). Here, the analyst may configure obfuscation strategies (cf. [23]).
This continuous interplay ( 2○) concludes once all KPIs have been computed.

Aggregation. The realization of 3○ depends on the support of proxy re-
encryption in the utilized FHE scheme: Either the KPI re-encryption (to encrypt
with the statistics server’s key) is offloaded to the participant (who simultane-
ously learns its own KPIs), or the re-encryption is performed locally at the proxy
(while the encrypted KPIs are shared to the participant for decryption). Once
the KPIs of k companies have been aggregated ( 4○), these aggregates are then
sent to the statistics server, which combines them with existing statistics in 5○.
Eventually, in 6○, the general statistics are retrievable for all participants.

Remarks. In SW-PIB, we have no requirements on the required hardware, as
data is protected through a software-based (FHE) approach. However, this design
comes with limitations of the locally supported FHE operations. Furthermore,
separating privacy proxy and statistics server is crucial to prevent the decryption
of (unaggregated) ciphertexts that contain sensitive company inputs or KPIs.

5 Evaluating Secure Industry Benchmarking Systems

To evaluate the feasibility of our discussed designs, we study their performance
(Sec. 5.1) using synthetic measurements and two real-world benchmarking al-
gorithms. We further discuss their respective security guarantees (Sec. 5.2) and
compare them (Sec. 5.3). With this overview, we provide insights into concept-
specific benefits and their applicability for benchmarking information systems.

5.1 Performance and Overhead Evaluation

We conduct our evaluations using our open-sourced implementations of the de-
signs. In particular, we focus on the performance of the KPI computation as it
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Fig. 4: The locally supported (complex) operations differ across implementations.

covers the majority of relevant operations. We do not report any numbers on
the aggregation phase ( 3○– 5○) due to its low computational footprint.

Implementation. For HW-PIB, we utilize Scone [3], running on Intel SGX.
For SW-PIB, we (i) re-implemented and extended PCB [23], which builds on
Microsoft SEAL [20], with array computations, as required by our PN use case,
and (ii) built a proof of concept that employs CONCRETE [8]. Since Microsoft
SEAL does not (yet) implement proxy re-encryption, we resort to offloading in
Step 3○. However, this limitation of SEAL is not a conceptual issue in SW-PIB.

Experimental Setup. Our implementations run on a commodity computer
with moderate resources (Intel i7-7700 with 16GB RAM and a regular SSD).
All entities communicate over the loopback interface. We conduct 50 runs for
each measurement, compute the mean, and calculate 99 % confidence intervals.
We rely on 128 bit-level security. In SEAL, we configure polynomial moduli of
16 384 (7 levels) and 8192 (4 levels) for IM and PN, respectively (cf. Sec. 2.2).
To ensure consistency across the reported numbers and avoid bias in our results,
we followed the same evaluation methodology for all conducted experiments.

Performance. To assess the performance, we have to look at the setup and
run times. We observe that the setup times are negligible ((17.893 ± 0.015) s for
HW-PIB and (3.424 ± 1.164) s for SW-PIB). Looking at the run times, we first
investigate the performance of single operations. As we illustrate in Fig. 4(a),
these synthetic measurements show that HW-PIB is one order of magnitude
faster than our SEAL- and CONCRETE-based implementations of SW-PIB, and
it does not require offloading (Fig. 4(b)). The performance of the CONCRETE-
based version will likely deteriorate once additional datatypes, such as floats
or larger integers, are supported. Still, we want to emphasize the potential of
programmable bootstraps, i.e., this FHE scheme supports additional complex
operations without the need for offloading. While the overhead of computing
FHE ciphertexts at the privacy proxy is already significant, the need to offload
operations further slows down SW-PIB; especially for constrained network links.

Moving to our real-world examples, we notice that both designs are practical
for real-world deployments. For the larger IM example (cf. Tab. 1), HW-PIB
and SW-PIB finish after (0.115 ± 0.019) s and (634.008 ± 0.538) s, respectively.
Thus, from a suitability perspective, analysts could even offer significantly larger
yet confidential benchmarks. In contrast, our PN example is an order of magni-
tude faster, with (0.080 ± 0.001) s and (34.409 ± 0.044) s. Overall, the runtimes
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for single operations, as we have illustrated in Fig. 4(a), amplify in real-world
benchmarks. Hence, the performance of SW-PIB remains inferior to HW-PIB.

Accuracy. While HW-PIB is exact by design, our SEAL-based implemen-
tation of SW-PIB uses approximate arithmetic, i.e., when processing floats, we
encounter precision losses. As we perform computations on approximated num-
bers, the precision loss amplifies, especially for long chains of operations. When
using SW-PIB and suffering from insufficient accuracy, the benchmarking algo-
rithm can be tweaked to better fit the precision of the utilized FHE scheme. For
example, numbers can be scaled to account for precision losses of approximate
ciphertext representations. Nonetheless, SW-PIB is feasible as we only observe
minor deviations. Overall, we measure (4.0 ± 0.3) % for IM and <0.01% for PN.

Ciphertext Overhead. HW-PIB does not introduce noteworthy storage
and network overhead by design. Thus, we now focus on SW-PIB: Relying on
FHE introduces storage and network overhead due to comparably large cipher-
text sizes. For IM, we measure a size of at most 1.842 MB for a single ciphertext,
i.e., even the up- and download of thousands of ciphertexts (when sharing in-
puts or during offloading) is feasible over bandwidth-constrained network links.
Hence, ciphertext overheads do not prohibit real-world applications of SW-PIB.

Moving on, we discuss our designs’ security before comparing them in detail.

5.2 Security Discussion

From a security perspective, we expect malicious-but-cautious entities [26], i.e.,
they want to extract as much information as possible without leaving any traces
of the extraction. This assumption is especially reasonable in scenarios with busi-
nesses that are bound to specific legislation. Consequently, we exclude collusion
attacks that involve multiple entities. Next, we look at our two designs in detail.

HW-PIB. The security builds upon hardware-based security. Consequently,
the hardware vendor must be trusted, i.e., it serves as the root of trust. Using
remote attestation (a key feature of TEEs), we can establish a trust chain to the
enclave and the code running within it. Hence, participants only have to verify
this chain and the running code using certificates and cryptographic signatures.
If the security has been correctly attested, all information and computations
are shielded within the TEE. Thus, in this case, HW-PIB is secure by design.
However, the multitude of (past) vulnerabilities in TEEs [9] could negatively
impact the trust in this technology. Consequently, we also consider SW-PIB.

SW-PIB. This design protects the company inputs and intermediate re-
sults using FHE. Its security builds on the privacy proxy and statistics server
not colluding. Then, the privacy proxy never has access to any information in
plaintext as it lacks the corresponding decryption keys. Moreover, the statistics
server only receives aggregates of k participants, i.e., it cannot deduce any de-
tails about specific companies if k is reasonably large (i.e., k > 3) [23]. Hence,
sensitive company data is protected (encrypted) at all times. In both designs, the
algorithm is never shared with the participants. However, in SW-PIB, we need to
offload specific complex operations (cf. Sec. 4.3). Thus, fractions of the algorithm
along with their intermediate results need to be shared with the participants,
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Table 2: Comparison of hardware- and software-secured benchmarking designs.

Criteria
Design HW-PIB SW-PIB

SGX SEAL CONCRETE
Setting IM PN IM PN IM PN
Performance ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
▶ Setup Remote attestation Exchange of key material
▶ Run Time [s] 0.11 ± 0.02 0.08 634.0 ± 0.5 34.4 Unknown
Accuracy Loss [%] Exact 4.0 ± 0.3 0.0 Unknown
Ciphertext Overhead ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
▶ Offloading [#] None ↓1487 ↑745 ↓53 ↑28 ↓84 ↑42 ↓0 ↑0
▶ Networking [≤×MB] No overhead 1.842 1.053 Unknown
Ease of Use ⋆⋆⋆ ⋆⋆⋆ Unknown
Security ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
▶ Assumptions Trusted hardware Secure FHE scheme
▶ Trust in Participants Not required Non-collusion required
▶ Privacy Issues None Minor (offl.) Barely any (offl.)
▶ Own KPIs After/with agg. Before agg. After/with agg.

slightly violating the intended algorithm confidentiality. To mitigate these impli-
cations of offloading, the benchmarking service can utilize different obfuscation
strategies, such as dummy requests, blinding, and request randomization [23].
Consequently, SW-PIB ensures the privacy needs of real-world benchmarks.

5.3 HW-PIB vs. SW-PIB: Selecting the Fitting Design

We compare both diametrical security concepts when realizing benchmarking
information systems in Tab. 2 to give a concise overview and to allow for well-
founded deployment decisions. Now, we briefly summarize the specific properties.

Performance. The benchmarking setup is a one-time task and thus negligi-
ble with times below 18 s. Given that benchmarking is not an everyday task, the
run time for each company is more than suitable for real-world applications, even
with significantly larger benchmarks. The real-world use cases further underline
this claim (IM: (634.008 ± 0.538) s and PN: (34.409 ± 0.044) s). The TEE- and
FHE-induced overheads are reasonable in light of the confidentiality benefits.

Accuracy. HW-PIB features exact computations by design, and the loss of
precision for SW-PIB is tolerable as (i) the deviations affect all companies and
(ii) benchmarks primarily concern the relative positioning [19]. Moreover, the
evaluated real-world algorithms were not tailored to the use with FHE. Given
that the inaccuracies follow from small numbers [23], the analyst could easily
scale the inputs and formulas to mitigate such deviations to a large extent.

Ciphertext Overhead. In addition to the noticeable ciphertext overhead
in SW-PIB, we further have to rely on offloading to compute a subset of com-
plex computations locally at the companies. Recent advances, such as CON-
CRETE [8], even promise to reduce the required offloading. Regardless of such
advances, companies receive more ciphertexts than they send, which fits to the
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imbalance of Internet connections. Even with ciphertext sizes of 1.842MB, for
IM, the upload of 1.391 GB per company is feasible in constrained networks.

Ease of Use. We consider our designs to be practical for real-world use as
companies can easily participate through common web browsers. While our im-
plementation of HW-PIB natively features a web-based client, we have shown in
previous work [23] that our SEAL-based implementation supports WebAssembly-
based web clients as well. Concerning reoccurring operational costs, HW-PIB
only requires a server with TEE support, which is commercially available at ma-
jor (cloud) vendors. In contrast, FHE-based SW-PIB does not introduce specific
hardware requirements, but its operations are computationally more expensive.

In real-world deployments, analysts could operate the cloud server and pri-
vacy proxy, respectively, and fund them through participation fees. If needed,
our designs support scaling out the cloud server and privacy proxy, respectively,
e.g., to support a tremendous number of participants. Aside from that, industry
associations could fund the statistics server in SW-PIB using their membership
fees to prevent collusion attacks [23]. Generally, HW-PIB is cheaper to operate
with fewer overheads if TEEs are trusted, compared to FHE-based SW-PIB.

Security. HW-PIB requires specific hardware for its operation and is secure
and privacy-preserving if the trusted hardware is realized as intended. Given that
companies establish a secure tunnel into the enclave, HW-PIB reliably protects
the algorithm, all inputs, and the computed KPIs. In contrast, SW-PIB does
not depend on specifically trusted hardware but on secure and properly config-
ured FHE schemes. We further require non-collusion between privacy proxy and
statistics server to ensure company privacy. Obfuscation strategies can help to
prevent offloading-induced information leaks (companies have access to the oper-
ator and intermediate data). As indicated before, modern FHE schemes promise
to further reduce the required offloading. While our SEAL-based SW-PIB uses
offloading for the KPI re-encryption ( 3○), which enables companies to abort
the protocol (then, they only have access to their KPIs), implementations that
support proxy re-encryption provide the same security properties as HW-PIB.

Takeaways. Nowadays, concepts from private computing are readily avail-
able to secure information systems in real-world deployments. Thus, when de-
signing secure information systems for industry benchmarks, the key question
is which conceptual technology should serve as the root of trust, i.e., trusted
hardware or a secure FHE scheme, mainly because the remaining properties do
not prohibit practical realizations, as we briefly summarize in the following.

Looking at the performance, both designs fulfill the needs of real-world bench-
marks, with HW-PIB computationally outperforming SW-PIB. While HW-PIB’s
accurate computations promise quick and precise results, SW-PIB is easier to de-
ploy as it is designed for untrusted hardware (despite requiring two entities, i.e.,
privacy proxy and statistics server). Thus, industry should indeed be able to of-
fer secure and privacy-preserving benchmarks in practice. The exact realization
(design) then likely depends on the availability of a TEE and the willingness
to build on its associated security assumptions (e.g., trusting the underlying
security concept, the vendors, and remote attestation). Otherwise, FHE-based
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implementations promise secure and practical real-world deployments. For now,
we recommend our revised SEAL-based version, but in the future, CONCRETE-
based implementations with fewer offloading needs could outperform it.

6 Conclusion

In industry, companies frequently rely on industry benchmarks to identify poten-
tials that allow them to improve their competitive position through strategic and
operational adjustments. Given its benefits, industry benchmarking is a valuable
tool. However, benchmarks depend on valuable information: First, the underly-
ing complex formulas to compute meaningful key performance indicators (KPIs)
constitute the analyst’s intellectual property and must be kept private. Likewise,
the KPI computation sources sensitive company inputs. The inputs, as well as
the KPIs, must thus remain confidential. Consequently, to increase the number
of participants, industry benchmarks must be operated privacy-preservingly.

Confidentiality requirements have hindered the wide use of corresponding in-
formation systems (ISs) so far. Given the latest advances in private computing,
we compared two fundamentally different concepts (hardware- and software-
based security) to realize privacy-preserving ISs that are capable of offering real-
world industry benchmarks while ensuring both algorithm confidentiality and
company privacy. Our corresponding designs each offer concept-specific benefits:
While the performance of HW-PIB and its accurate computations promise quick
and precise results, SW-PIB is easier to deploy and does not depend on specific
hardware or its associated security guarantees. Our evaluation of two real-world
industrial use cases (IM & PN) demonstrates that secure benchmarking deploy-
ments are practical with today’s concepts from private computing. In the future,
we look forward to the rapid evolution of private computing and its implications
on information systems beyond our application in industry benchmarking.

Acknowledgments. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC-
2023 Internet of Production – 390621612. We thank Jan-Gustav Michnia for his
initial exploration of the FHE library CONCRETE [8]. We followed an abstract
research methodology [21] to structure and organize our research collaborations.

References

1. van der Aalst, W.M.P.: Federated Process Mining: Exploiting Event Data Across
Organizational Boundaries. In: IEEE SMDS (2021)

2. Acar, A., Aksu, H., et al.: A Survey on Homomorphic Encryption Schemes: Theory
and Implementation. ACM Comput. Surv. 51(4) (2018)

3. Arnautov, S., Trach, B., et al.: SCONE: Secure Linux Containers with Intel SGX.
In: USENIX OSDI (2016)

4. Becher, K., Beck, M., Strufe, T.: An Enhanced Approach to Cloud-based Privacy-
preserving Benchmarking. In: NetSys (2019)



16 J. Pennekamp et al.

5. Bibow, P., Dalibor, M., et al.: Model-Driven Development of a Digital Twin for
Injection Molding. In: CAiSE (2020)

6. Boos, W.: Production Turnaround — Turning Data into Sustainability. Tech. rep.,
RWTH Aachen University (2021), white Paper

7. Brauner, P., Dalibor, M., et al.: A Computer Science Perspective on Digital Trans-
formation in Production. ACM Trans. Internet Things 3(2) (2022)

8. Chillotti, I., Joye, M., et al.: CONCRETE: Concrete Operates oN Ciphertexts
Rapidly by Extending TfhE. In: WAHC (2020)

9. Fei, S., Yan, Z., et al.: Security Vulnerabilities of SGX and Countermeasures: A
Survey. ACM Comput. Surv. 54(6) (2021)

10. Gunasekaran, A., Putnik, G.D., et al.: An expert diagnosis system for the bench-
marking of SMEs’ performance. Benchmarking 13(1–2) (2006)

11. Herrmann, D., Scheuer, F., et al.: A Privacy-Preserving Platform for User-Centric
Quantitative Benchmarking. In: TrustBus (2009)

12. Jarke, M.: Data Sovereignty and the Internet of Production. In: CAiSE (2020)
13. Kamal, M.R., Isayev, A.I., Liu, S.J.: Injection Molding: Technology and Funda-

mentals. Hanser (2009)
14. Kerschbaum, F.: Practical Privacy-Preserving Benchmarking. In: IFIP SEC (2008)
15. Kerschbaum, F.: Secure and Sustainable Benchmarking in Clouds. Bus. Inf. Syst.

Eng. 3(3) (2011)
16. Kerschbaum, F., Oertel, N., Weiss Ferreira Chaves, L.: Privacy-Preserving Com-

putation of Benchmarks on Item-Level Data Using RFID. In: ACM WiSec (2010)
17. Kozak, M.: Destination Benchmarking: Concepts, Practices and Operations. CABI

(2004)
18. Liebenberg, M., Jarke, M.: Information Systems Engineering with DigitalShadows:

Concept and Case Studies. In: CAiSE (2020)
19. Marti, J.M.V., d. R. Cabrita, M.: Entrepreneurial Excellence in the Knowledge

Economy: Intellectual Capital Benchmarking Systems. Palgrave Macmillan (2012)
20. Microsoft, Inc.: Microsoft SEAL. https://github.com/Microsoft/SEAL (2018)
21. Pennekamp, J., Buchholz, E., et al.: Collaboration is not Evil: A Systematic Look

at Security Research for Industrial Use. In: LASER (2021)
22. Pennekamp, J., Glebke, R., et al.: Towards an Infrastructure Enabling the Internet

of Production. In: IEEE ICPS (2019)
23. Pennekamp, J., Sapel, P., et al.: Revisiting the Privacy Needs of Real-World Ap-

plicable Company Benchmarking. In: WAHC (2020)
24. Rittstieg, M.: Einflussfaktoren der Leistungsfähigkeit von Produktionsstandorten

in globalen Produktionsnetzwerken. Ph.D. thesis (2018)
25. Russinovich, M.: Azure confidential computing. https://azure.microsoft.com/

en-us/blog/azure-confidential-computing/ (2018 (accessed March 20, 2023))
26. Ryan, M.D.: Enhanced Certificate Transparency and End-to-end Encrypted Mail.

In: NDSS (2014)
27. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted Execution Environment: What

It is, and What It is Not. In: IEEE TrustCom (2015)
28. Sahin, C., Kuczenski, B., et al.: Privacy-Preserving Certification of Sustainability

Metrics. In: ACM CODASPY (2018)
29. Sobati-Moghadam, S., Fayoumi, A.: Private Collaborative Business Benchmarking

in the Cloud. In: SAI (2018)
30. Teicholz, E.: Facility Design and Management Handbook. McGraw-Hill (2001)
31. Tucker, F.G., Zivan, S.M., Camp, R.C.: How to Measure Yourself Against the Best.

Harv. Bus. Rev. 65(1) (1987)
32. Verhaelen, B., Mayer, F., et al.: A comprehensive KPI network for the performance

measurement and management in global production networks. Prod. Eng. (2021)

https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/

	Designing Secure and Privacy-Preserving Information Systems for Industry Benchmarking 

