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ABSTRACT
Website fingerprinting (WFP) is a special case of traffic analysis,
where a passive attacker infers information about the content of
encrypted and anonymized connections by observing patterns of
data flows. Although modern WFP attacks pose a serious threat to
online privacy of users, including Tor users, they usually aim to
detect single pages only. By ignoring the browsing behavior of users,
the attacker excludes valuable information: users visit multiple
pages of a single website consecutively, e.g., by following links. In
this paper, we propose two novel methods that can take advantage
of the consecutive visits of multiple pages to detect websites. We
show that two up to three clicks within a site allow attackers to
boost the accuracy by more than 20% and to dramatically increase
the threat to users’ privacy. We argue that WFP defenses have to
consider this new dimension of the attack surface.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; • Networks→ Network privacy and anonymity.
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1 INTRODUCTION
Today, Tor [2] is the most popular low-latency anonymization net-
work used to hide the identity (i.e., IP address) of Internet users
and to bypass country-level censorship. To achieve anonymity, Tor
users encrypt their data in multiple layers and transmit it through
a chain of three volunteer nodes. Thus, Tor promises to hide the
relationship between users and their communication partners from
a local passive observer, e.g., an ISP, located on the link between the
Tor user and the first anonymization node [2]. However, Tor leaks
information about the number, direction, and timing of transmitted
packets, which enables the mounting of sophisticated attacks such
as website fingerprinting (WFP) [7–9]. In WFP, the attacker aims
to identify the content (i.e., the website visited) of encrypted and
anonymized connections by analyzing patterns of communication.
He collects traces of multiple page loads for each of his websites
of interest, extracts patterns (i.e., fingerprints) from the recorded
traffic, and applies machine learning (ML) to train a classifier to rec-
ognize them. Finally, he uses the trained classifier to detect which
website has been visited by observing an unknown trace of a real
user. Although modern WFP attacks [4, 8, 9] achieve more than
90% of classification accuracy in laboratory settings, their efficiency
in real world is still highly debated due to the use of unrealistic
assumptions and the huge universe size of the World Wide Web.

Currently, related work [4, 7–9] mainly focuses on the detection
of concrete index pages through isolated page loads, instead of the
site a visited page belongs to (the de-facto goal of a real adversary).
Only a few works [7, 8] examine a more realistic scenario, in which
users can visit both index and non-index pages of different websites.
However, these studies do not analyze the danger of WFP when
users browse multiple pages of a given website. On the other hand,
real users visit several pages of a single site consecutively, e.g., by
following links. Hence, if the adversary can exploit the additional
information leaked through the set of pages belonging to the same
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website and visited by a user one after another, we argue that WFP
will become vastly more dangerous than previously expected.

In line with this revised evaluation setting, we propose two
novel WFP strategies, voting-based and HMM-based, that consider
the set of pages of a single site accessed consecutively by a user.
Although Cai et al. [1] have already apllied a Hidden Markov Model
(HMM) to model a specific user behavior, the authors used a very
limited dataset and analyzed neither the influence of the number
of observed pages of a website nor the impact of different user
behaviors on the accuracy—the main contributions of our work. By
using our WFP strategies, we show that two, at most three, clicks
within a website allow to boost the accuracy by more than 20% and
brings it into the alarming area. Moreover, our methods improve
the attack even without the knowledge about the exact sequence
of visited pages, rendering it even more dangerous.

2 OUR FINGERPRINTING STRATEGIES
We aim to detect a website by observing a number of pages of
that specific site that are visited by a user one after another. These
consecutive visits leak information about the classification that
can be sourced to refine single predictions for individual pages. We
analyze two strategies that exploit this leakage: (𝑖) voting-based
combining the predictions for separate pages of a single site without
considering the order of their visits, and (𝑖𝑖) HMM-based using the
knowledge about the sequence of visited pages to detect the website.

Voting-based. We use a classifier that is trained on different
websites represented through both their index and non-index pages.
For each testing page, the classifier computes a set of probability
values associated with the likelihood that the given page load be-
longs to each of these sites. Next, for each testing set of observed
pages, we multiply the probability values of these pages. As a re-
sult, for each website class, we obtain a single probability for each
testing set of observed pages and the website class with the highest
likelihood yields our final prediction.

HMM-based.We create a separate HMM model for each web-
site, in which pages correspond to different states and state transi-
tion probabilities represent the probability a user would navigate
from one page to another. As the majority of websites consists of
a large number of pages, the use of a separate state for a single
page does not scale. Thus, we use clustering to aggregate several
webpages that look similar and have the same link connectivity to
other pages of the same website into a single HMM state. As the
number of clusters varies for different websites, we use the DB-
SCAN clustering algorithm [3], which does not require any prior
information about the number of clusters to be created. The set
of created clusters represent the set of hidden states in our HMM
model and we train a separate classifier on each of these clusters.

Beside the set of hidden states, we also need to define the set
of observations, the set of transition probabilities indicating the
likelihood of generating a given observation upon transitioning to
a certain hidden state, the set of initial probabilities, and the set
of observation probabilities to complete the HMM model for each
website. The set of observations corresponds to the set of predicted
cluster labels for each testing page. To derive the set of transition
probabilities, we use two sources of data: (𝑖) randomly-generated
user browsing sessions describing sequences of pages, and (𝑖𝑖) a

sitemap graph of each website containing available pages and the
link relationships between them. The set of start probabilities is the
relative frequency of clusters (counted for a set of training sessions)
containing the first page in a session. The set of observation proba-
bilities describes the confusion between the two sets of predicted
labels (observations) and the real labels (hidden states), i.e., how
many training pages labeled as class 𝑖 are predicted as class 𝑗 . To
obtain the final prediction for a sequence of pages, we sum the
predicted probability values of each page for each website and then
multiply the aggregated probabilities of the pages in the sequence.
The website class with the highest likelihood is our final prediction.

3 DATASET
A typical user browsing session usually contains pages of less pop-
ular websites, e.g., local newspapers, small sport clubs [5]. Thus,
we compiled a dataset of 100 websites that consists of both less
popular websites covering different categories, different layouts,
and contents from different regions in the world and Alexa Top
websites. For each website, we then create a sitemap graph that is
used to collect randomly-generated user browsing sessions.

Generating Sitemap Graphs. For each website, we created a
sitemap graph containing data about available webpages and the
link relationship between them. Although some websites offer a
hierarchical overview documents of their pages, these documents
do not always provide data on page linkability. Thus, we used a
different strategy to collect the sitemap graphs. First, for each site,
we gather the URLs of its index page and four additional, popular
pages of it that were found from Google, i.e., to simulate that users
access a website not only through its index page but also through
an already known link, using a bookmark or by querying a search
engine [5]. Starting from one of these five pages, we then extract all
URLs from that page referring to the same website. We group the
collected URLs based on their position on the page, i.e., whether
they are located in the navigation section or in the footer, and
exclude groups of URLs that are typically less visited by users, e.g.,
privacy policy and legal notice pages. From the remaining groups,
we randomly select ten groups of URLs, fetch one random URL
from each of these groups to simulate a user click, and repeat the
procedure described above to decide on the next click. The crawling
of URLs terminates once we reach a depth of ten pages for each
website and have gathered at least 2000 unique pages. Finally, we
build a directed graph where each node represents a URL and an
edge between two nodes corresponds to a link between these URLs.
For this graph, we consider all seen URLs regardless whether they
were selected by the sampling for further steps or not.

Generating User Sessions. Although a stored browser history
would be a reliable source of real user sessions, it can reveal confi-
dential data about users and usually is kept private. Thus, we use
the gathered sitemap graphs to synthetically create a set of user
sessions while ensuring that they exhibit realistic characteristics,
as described by Kumar et al. [5]. As users can access a website in
different ways, we use either the index page or one of the four
additional pages of a site to start a user session. As Miller et al. [6],
we execute a random walk over the sitemap graph of that website
to sample the rest of the user session, whereas we prefer pages
that have been visited neither in the current nor in any previously
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Figure 1: Accuracy achieved by state-of-the-artWFP attacks.

generated session. The latter increases the diversity between dif-
ferent sessions (and, thus, complicates the WFP attack). In total,
we sampled 10 sessions for each website containing 10 pages per
session and at least 50 unique pages per website.

Collection ofTrafficTraces.We rely on an existingmethod [8]
that operates Tor Browser 7.5.6 to collect 20 traces for each of the
pages in our user sessions. Like related work [4, 9], we further
reconstruct the corresponding Tor cells exchanged for each page
load by applying a previously-used data extraction method [8].

4 EVALUATION
Next, we demonstrate the effectiveness of our novel WFP strategies.

Voting-based.We first analyze how our voting-based scheme
influences the accuracy of different state-of-the-art WFP attacks for
different sets of testing pages per website in a closed-world scenario
(i.e., the attacker knows the set of all visited websites). We consider
two evaluation scenarios: (𝑖) the adversary knows all webpages of a
given website that can be visited by a user, and (𝑖𝑖) the attacker can
use only a subset of the available pages belonging to a given website
for training. Based on these scenarios, we apply a 10-fold cross-
validation (CV) either with respect to the number of available traces
per webpage or with respect to the number of available pages per
website. Figure 1 shows the accuracy achieved by three state-of-the-
art WFP attacks: CUMUL [8], k-FP [4], and DF [9]. Our experiments
confirm our claim that WFP attacks become more effective when
the number of consecutively observed pages belonging to a single
website increases. We further notice that only two clicks within
a site are sufficient to achieve 100% accuracy by using the best
performing classifier DF. In a more realistic scenario, already three
clicks within a website are sufficient to boost the accuracy of k-FP
and CUMUL by approximately 20%, while DF correctly classifies
all websites when the user consecutively visits five pages.

HMM-based.We further analyze whether the exact sequence
of visited pages can improve the overall accuracy achieved by the
classifiers. To this end, we combine the worst-performing classifier
CUMUL with our HMM-based strategy. First, we assume that the
adversary knows all sessions, i.e., the HMM contains transition
information for all possible user sessions. In other words, we apply
a 10-fold CV where for each page we use 18 traces for training
and two for testing. As shown in Figure 2, the accuracy increases
significantly for all sessions of length of two or higher.

Next, we evaluate a scenario, in which the user session used for
testing is unknown to the attacker, i.e., we use a 10-fold CV to the
number of user sessions. In most of the cases, this scenario leads to
testing on pages that are also unknown to both CUMUL and HMM.
The accuracy decreases slightly compared to the scenario when the
sessions are known (see Figure 2). Still, we see a similar positive
trend from the use of sequence of pages. The negative effect of
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Figure 2: Accuracy achieved by our HMM-based strategy.

unknown sessions is prominent for short sessions and decreases
when using longer sessions. For a session of length ten, the accuracy
is 96.8% compared to 97.8% when all sessions are known.

Finally, instead of learning transition probabilities from user
sessions for HMM, we use the sitemap graphs. Although we cannot
avoid a potential bias due to the use of the sitemap graphs to collect
user sessions, we argue that we can cover orders of magnitude
more user sessions by using this approach. As shown in Figure 2,
the use of sitemap graphs to compute the transition probabilities is
beneficial for user sessions of at most four pages. Still, the difference
in the accuracy in the different use cases is neglectable.

To sum up, our results show that our revised, more realistic
attacker model for WFP attacks is far more dangerous for users,
who consecutively browse multiple pages of a single website.

5 CONCLUSION
In this work, we considered a more realistic attacker model for WFP
attacks and proposed two strategies that use implicit knowledge on
browsing behavior. Our evaluation shows that two, at most three,
clicks within a website are sufficient to significantly improve state-
of-the-art WFP attacks. We demonstrate that WFP attacks pose a
significantly more serious threat to online privacy of Tor users who
browse multiple pages of a given website. Our results underline the
threat of an attacker who is able to fingerprint a complete website.

As next steps, we will increase the scale and scope of our strate-
gies to identify ways to improve their overall performance. We will
also extend our analysis to an open-world setting and study the
efficiency of WFP defenses against this new attack surface. While
our preliminary analysis shows that the exact sequence of visited
pages is only secondary, we would like to further explore its impact.
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