
Congestion-Responsive Queuing for Internet Flows
Ike Kunze∗, Constantin Sander∗, Mike Kosek†, Lars Tissen∗, Jan Pennekamp∗, Klaus Wehrle∗

∗RWTH Aachen University, Aachen, Germany · {kunze, sander, tissen, pennekamp, wehrle}@comsys.rwth-aachen.de
†Technical University of Munich, Munich, Germany · kosek@in.tum.de

Abstract—Internet congestion management is once again un-
dergoing radical change: QUIC has ignited a cambrian explosion
in congestion control (CC) implementations while the many
versions of BBR alone have increased the diversity in algorithms
used with TCP, both making the congestion landscape more
complex. At the same time, the interplay of CC and AQM is
also evolving but congestion unresponsiveness remains a threat.
In particular, L4S crucially requires a fine-grained CC and AQM
interaction to provide its benefits and suffers from unresponsive
traffic. Overall, we need more responsive traffic on the Internet
as well as mechanisms that can cope with unresponsiveness.

We present Congestion-Responsive Queuing (CRQ), our L4S-
inspired system which is designed to promote responsive CC,
manage unresponsive traffic, and handle QUIC and TCP flows
alike. Similar to L4S, CRQ uses two queues for flow isolation.
Yet, in contrast to L4S, we isolate flows based on their actual
congestion responsiveness, moving responsive flows to one queue
and leaving the remaining flows in the other. Our evaluation with
an eBPF prototype highlights the efficacy of our design and shows
that CRQ can provide effective incentives for responsive CC.

I. INTRODUCTION

© IEEE, 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: TBD

The stability of the Internet relies on congestion control
(CC) which helps end hosts in finding a suitable share of
the limited bandwidth and avoid a congestion collapse [1].
Yet, despite over 30 years of research and standardization,
the domain is still very dynamic: many new CC algorithms
(CCAs) have been proposed over the years, experts frequently
revise existing CCAs [2], [3], and set new guidelines for
their specification [4]. As a result, there has always been a
large diversity in practically deployed CCAs [5], [6] with a
significant impact on performance [7], [8].

Recently, QUIC, with its user-space nature, has signifi-
cantly lowered the bar for developing and deploying new
CCAs compared to those traditionally used with TCP [9].
Additionally, it was found that QUIC stacks differ in their
CCA implementations, resulting in different CC behavior
despite using the same algorithms on paper [10]. Overall,
these developments have drastically complicated the already
existing diversity in CC and further challenge the pillars of the
Internet as many mechanisms, such as buffer sizing rules [11]
or queuing mechanisms [12], [13], were designed for a more
stable CC landscape dominated by loss-based CCAs.

One network management domain that is particularly af-
fected by these observations is active queue management
(AQM). With AQM, network operators actively manage router
queues with the goal of assisting end host CC in finding
a fair share of the bandwidth and, ultimately, improving
throughput and latency. However, AQM often struggles with
unresponsive flows [14], i.e., flows that do not respond to

emitted congestion signals, such as packet drops or Explicit
Congestion Notification (ECN) markings. Even mechanisms
designed for constraining the advantages of flows not using
CC typically only probabilistically identify misbehaving traffic
which also hurts benign flows [14]–[16].

These issues are exacerbated with L4S [17] as operators put
an increasing focus on improving latencies across the Internet
with fine-grained AQM and DCTCP-style CC. For this, L4S
first classifies flows based on their use of specific ECN code
points before assigning them to two queues: one L4S queue
with fine-grained AQM for L4S-capable traffic, the other for
“classic” traffic with standard AQM. L4S flows can then
benefit from the fine-grained marking while other flows are not
harmed by them. However, flows mistakenly using the wrong
ECN code point, e.g., caused by network interference [18], or
doing it consciously with hopes of gaining an advantage, can
easily void the benefits of L4S [19]–[21]. Hence, L4S could
benefit from a robust mechanism for identifying misbehaving
traffic to protect the L4S queue.

Our previous work SpinTrap [22] is a first step toward
addressing this need. In short, SpinTrap assesses the actual
congestion responsiveness of QUIC flows by first tracking
their sending behavior and any emitted congestion signals.
It then checks whether flows subject to signals respond with
a decrease in their sending behavior: flows with a reduction
are responsive to congestion, flows without are unresponsive.

In this paper, we draw inspiration from L4S and propose
CRQ which embeds SpinTrap in a new dual-queue scheme that
does not rely on ECN code points for flow separation. Instead,
we use the responsiveness assessment pioneered by SpinTrap
to isolate responsive flows in one dedicated queue while the
remaining traffic is served by a standard queue. For this, we
first design TCPTrap, which transfers the principles of the
QUIC-specific SpinTrap to TCP, such that CRQ can handle
QUIC and TCP alike. We then conceptualize CRQ’s dual-
queue scheme which can use different underlying AQM mech-
anisms to optimize the performance of responsive flows while
managing unresponsive traffic. In our evaluation, we first
briefly study the efficacy of TCPTrap before focusing on CRQ,
showing that basing a dual-queue scheme on a congestion
responsiveness assessment can indeed provide performance
benefits. Overall, this paper contributes the following:

• We propose CRQ, a dual-queue system that isolates
traffic based on congestion responsivenesss.

• We design TCPTrap, the counterpart to SpinTrap, that
can assess the responsiveness of TCP traffic.



• Evaluations with our eBPF prototype [23] show that CRQ
can provide effective incentives for using responsive CC.

Structure. Sec. II discusses key concepts of and related works
on congestion management. Sec. III then presents the design
of CRQ and of TCPTrap. We extensively evaluate CRQ and
TCPTrap in Sec. IV, discuss main takeaways in Sec. V, and
conclude the paper in Sec. VI.

II. INTERNET CONGESTION MANAGEMENT

Hosts on the Internet have to share a limited bandwidth
while individual flows usually aim to maximize their through-
put. Hence, the decentralized bandwidth allocation is an es-
sential component of the Internet. Originally, CC only focused
on preventing a network overload for which CCAs typically
maintain a congestion window (cwnd) to limit the amount of
unacknowledged data that can be in-flight. CCAs then adjust
the cwnd to the current network congestion status for which
they rely on different congestion signals, such as packet loss.
ECN. In addition to avoiding congestion, Internet congestion
management increasingly aims at improving end-to-end per-
formance. ECN enables network devices to signal impending
congestion without packet loss using two IP header bits. Hosts
enable ECN by using either of two ECN-Capable Transport
(ECT) code points, i.e., ECT(0) or ECT(1), and intermediaries
signal congestion by changing ECT to Congestion Experi-
enced (CE). In practice, CE markings are emitted by AQM to
assist end hosts in finding a suitable sending rate. “Classic”
CCAs [17] interpret CE markings equally to packet loss and
react to such signals once per window of data [24].
L4S. The L4S framework [17] goes a step further and aims
at providing very low latencies across the Internet. Its main
idea is to give DCTCP-style ECN feedback [25] for “scalable”
CCAs, such as Prague [26], which can react to CE markings
more than once per round-trip time (RTT) and allow for a
fine-grained sending rate control to avoid queue buildup. As
not all traffic can and will use scalable CCAs, L4S currently
targets a dual-queue (DualQ) operation [21]: one queue with
fine-grained AQM dedicated for L4S traffic, the other serving
L4S-incapable traffic with classic AQM. Flows are assigned
to the queues based on the used ECT code points: ECT(1)
identifies L4S traffic, ECT(0) standard traffic. Flows not using
ECN are also assigned to the standard queue while packets
with CE markings are served by the L4S queue [27].
Flow isolation challenges. While relying on ECT code points
is easy and stateless, it comes with the significant challenge
that ECT(0) and ECT(1) used to be equivalent such that
(older) hosts might still be using either one. Furthermore,
middleboxes interfering with ECN code points, e.g., changing
ECT(0) to ECT(1), can still be found on the Internet [18].
Finally, malicious hosts could also illicitly use the wrong code
point in the hope of gaining L4S advantages. Overall, there are
several ways how L4S-incapable traffic could end up in the
L4S queue. In such cases of unresponsive traffic overloads,
the L4S DualQ falls back to the performance of a classic,
single-queue AQM [19]–[21] and all benefits are wiped out.

Related work. There is general consensus that unresponsive
traffic is a potential threat to AQM [28] and many designs
constrain the advantages of unresponsive flows, e.g., through
probabilistically identifying misbehaving traffic by equating
high queue shares or flow arrival rates with unresponsive-
ness [29]–[33]. Yet, such solutions often also hurt benign
flows [14]–[16]. Statically classifying flows, e.g., based on
their UDP use [34], [35], is also insufficient, e.g., in light
of QUIC [36], [37] or responsive UDP-based video confer-
encing [38]. Overall, we observe that today’s AQM often
struggles with unresponsiveness, leaving a gap for robust
mechanisms that can reliably identify misbehaving traffic.
Identifying unresponsive traffic. In previous work, we have
proposed SpinTrap [22], a first major building block for classi-
fying flows based on their actual responsiveness. In particular,
SpinTrap can identify QUIC flows that do not respond to
congestion signals. For this, it tracks the sending behavior of
individual flows as well as explicit (ECN) and implicit (packet
loss) congestion signals that affect them. Once it detects such
signals, it checks for corresponding reductions in the sending
behavior two RTTs later: flows with a reduction are classified
as responsive, flows without reduction as unresponsive.
Isolating traffic with SpinTrap for promoting CC. Con-
ceptually, SpinTrap can be used for a myriad of applications.
Drawing inspiration from the L4S DualQ, we focus on queue
management. In particular, SpinTrap can first assess the re-
sponsiveness of a flow. The assessment can then guide traffic
isolation and queuing: similar to L4S-capable traffic, respon-
sive flows can be isolated and subjected to (fine-grained) AQM
while unresponsive traffic can be served with standard AQM.
Such a system would not only reward flows that support
Internet stability, but could also provide concrete incentives
for deploying CC as envisioned by Floyd and Fall [39].
Congestion-Responsive Queuing (CRQ). In this paper, we
study the proposed concepts in a focused system without
direct interactions of the two queues as would be the case
with the L4S coupled DualQ [21]. In particular, we propose
a dual-queue system where flows are assigned based on their
current congestion responsiveness at runtime — Congestion-
Responsive Queuing (CRQ). For this, we pair SpinTrap with
TCPTrap, a novel TCP responsiveness assessment tool, for
providing the underlying responsiveness assessment that then
informs the queue assignment. In the following, we present
CRQ, its components, and our prototype in more detail.

III. Congestion-Responsive Queuing (CRQ)

The main motivation for CRQ is to reward flows with a
responsive CCA as they are essential for avoiding a congestion
collapse and generally healthier for the overall coexistence in
the Internet. It is inspired by the DualQ operation of L4S
but performs its traffic isolation based on the actual flow
behavior and not based on two IP header bits. In particular,
CRQ relies on two main components as illustrated in Fig. 1.
First, it constantly assesses the responsiveness of QUIC and
TCP flows. Second, it uses the assessment results to distribute
traffic into dedicated queues: responsive flows are served by a



Congestion-Responsive Queuing (CRQ)

SpinTrap

QUIC

TCPTrap

TCP

Responsiveness

Assessment

Responsive

Standard

Queuing 

System

Fig. 1. CRQ relies on SpinTrap and TCPTrap for assessing the congestion
responsiveness of flows. It then assigns responsive traffic to the responsive
queue while the remaining traffic shares the standard queue.

responsive queue while all other traffic remains in a standard
queue. In the following, we discuss the conceptual considera-
tions for CRQ in more detail starting with the responsiveness
assessment in Sec. III-A, followed by the queuing system in
Sec. III-B, before finally presenting our prototype in Sec. III-C.

A. Assessing Congestion Responsiveness

CRQ requires a robust responsiveness assessment. As al-
ready discussed in Sec. II, SpinTrap provides such an assess-
ment for QUIC [22]. Yet, while QUIC is on the rise [36],
[37], TCP still represents a large share of the Internet [40].
Thus, for widespread applicability, CRQ cannot solely rely
on SpinTrap which is why we combine it with TCPTrap, our
novel TCP responsiveness assessment tool. Next, we briefly
revisit key concepts of SpinTrap and our lessons learned from
previous work before we present the design of TCPTrap.

1) SpinTrap: The responsiveness assessment provided by
SpinTrap conceptually relies on two key observations. First,
classic CCAs react to congestion signals by reducing their
cwnd once per window of data [24]. Second, any reaction
only becomes visible on the wire one to two RTTs after the
signals were emitted: if the signal is emitted at the start of a
window, a reaction is perceivable in the subsequent window,
i.e., one RTT later. If, however, the signal is emitted at the
end of a window, the reaction might only become perceivable
in the next but one window, i.e., two RTTs later (cf. [22]).

SpinTrap translates these considerations into a mechanism
that constantly tracks the sending behavior of QUIC flows and
corresponding congestion signals in the form of packet loss
and CE markings. For this, it relies on the spin bit, an optional
QUIC feature that explicitly shapes individual round trips
(“cycles”) on the transmission, originally with the purpose
of enabling passive RTT measurements. SpinTrap leverages
these explicit cycles to infer the sending window (ultimately
governed by the cwnd) and compares the window at the time
of a congestion signal with the window two cycles later.
Responsiveness criteria. In its basic form, SpinTrap classifies
all flows as responsive that show any form of reduction,
irrespective of the amount of reduction or the overall window
size. However, in previous work [22], we found a more fine-
grained configuration to work better. First, to protect flows that
have already backed off due to heavy congestion, SpinTrap
only assesses flows whose sending window is larger than

Host A Host BTCPTrap

eACK: a+1

eACK: b+1

SEQ: a

eACK: x+1

SEQ: b
ACK: a + 1

SEQ: x
ACK: b + 1

Fig. 2. TCPTrap matches TCP SEQs with their corresponding ACKs to
determine individual cycles. Only half-cycles are possible for unidirectional
traffic due to non-increasing SEQs in the reverse direction.

four times the maximum segment size which corresponds
to the current recommendation for the initial congestion
window [41]. Additionally, to check for meaningful responses
and exclude random sending rate fluctuations, we require a
reduction to 90% or less of the previous sending window.
Finally, we use a majority voting for the responsiveness
assessment to avoid repeated switching between the queues: a
flow that has been classified as responsive ten times will stay
responsive even if it is classified as unresponsive once.

While SpinTrap can reliably assess QUIC traffic, its use of
the spin bit prohibits a direct application to TCP. Hence, to
enable CRQ, we next present TCPTrap which translates our
fundamental considerations from above to TCP.

2) TCPTrap: Plain TCP has no explicit measurement fea-
tures that could help distinguish unique cycles. Yet, compared
to QUIC, it has a more expressive wire image [42] as it does
not encrypt its headers which enables measurements based
on implicit protocol semantics [43]. Inspired by Dart [44],
a mechanism designed to estimate TCP RTTs, we leverage
the cyclic interaction of TCP sequence numbers (SEQs) and
acknowledgement numbers (ACKs) for dividing the overall
transmissions into dedicated cycles similar to SpinTrap.
Tracking TCP cycles. The fundamental observation is that
a new SEQ is answered by a new ACK. An intermediary
with bidirectional visibility can, thus, track one half of the
overall round trip by matching the SEQ in one direction with
its ACK in the opposite direction. For bidirectional traffic,
i.e., both end hosts transmitting payload, the ACK might be
transmitted with a new SEQ of its own which causes another
ACK on the original sender to complete the overall round trip.

TCPTrap leverages these semantics for tracking cycles as
visualized in Fig. 2. A cycle starts when host A transmits a
segment with a new SEQ a. TCPTrap stores the corresponding
expected ACK (eACK) a + 1 and then monitors the reverse
direction for ACKs from host B. An ACK matching the stored
eACK completes the first half of the overall cycle (blue).

Ideally, the segment with the matching ACK also contains
a new SEQ b for the reverse direction. In this case, TCPTrap
again stores the corresponding eACK b + 1 and the second
half of the cycle (green) is complete once an ACK from A
matches the eACK. Together, this yields the overall cycle in



a way that is similar to the explicit spin bit cycle.
However, in the case of asymmetric traffic, it might be that

one of the hosts, e.g., host B, mostly transmits ACKs. In this
scenario, the SEQs from B mostly remain unchanged as will
the corresponding eACK stored for segments from A. Hence,
the next segment of A will directly trigger a new cycle. This
way, TCPTrap implicitly supports uni- and bidirectional traffic
but risks too short cycles in the case of unidirectional traffic.
Responsiveness criteria. TCPTrap directly borrows Spin-
Trap’s congestion signal tracking and assessment logic,
reusing the responsiveness criteria described above.
Limitations and sources of inaccuracy. In contrast to Spin-
Trap, TCPTrap requires bidirectional traffic visibility to map
SEQs and ACKs. While this theoretically limits its applicabil-
ity, bidirectional visibility is often given, e.g., for university
networks or residential access routers [44]. One source of
inaccuracy is that TCPTrap determines cycles implicitly based
on TCP semantics, such that it can be affected by any changes
in the sending patterns. Additionally, as described above, TCP-
Trap’s cycle tracking could become imprecise for asymmetric
connections as is often the case for web traffic. Hence, we
study the resulting assessment accuracy of TCPTrap and the
impact of traffic directionality in our evaluation.

B. Queue Mechanism

The main goal of CRQ is to provide means for improving
the performance of flows with responsive CCAs, ideally
giving strong incentives for the use of CC. We realize this
vision through a dual-queue design that is inspired by the
L4S DualQ: a responsive queue exclusively serves responsive
traffic while a standard queue serves all other traffic. This way,
responsive flows are isolated and protected from unresponsive
traffic so that they can better manage their sending behavior,
similar to the L4S queue with L4S. However, in contrast
to L4S, CRQ’s flow isolation decides based on the respon-
siveness assessment of SpinTrap and TCPTrap, i.e., actual
flow behavior, which reduces the likelihood of unresponsive
traffic being assigned to the responsive queue. Overall, CRQ
encourages flows to deploy CC and incentivizes using the spin
bit, as QUIC flows without the mechanism are not assessed.
Configuration space. Assuming a robust responsiveness as-
sessment, the main parameter space for CRQ lies in con-
figuring the two queues and in defining how and when
exactly flows are assigned to which queue. Conceptually,
CRQ can support nearly arbitrary combinations, e.g., using
different AQM mechanisms for the queues, assigning them
different priorities and bandwidth shares, or mandating loss
or ECN responsiveness. However, not all combinations make
sense in practice. One example is combining a loss-based
standard queue with an ECN-based responsive queue and only
moving ECN-responsive traffic to the responsive queue. In this
scenario, CRQ cannot assess the ECN responsiveness of the
flows without other hops emitting CE signals. Thus, if no other
hops signal CE, the responsive queue remains unused. Based
on this observation, we argue that it is sensible to deploy
queue combinations that can also work independent of other

hops. Hence, in this paper, we focus on combinations where
both queues use the same congestion signals. In the following,
we discuss the choice of the congestion signals and further
configuration options of CRQ in more detail.

1) Congestion signals: Packet loss and ECN are today’s
main congestion signals and we use them for CRQ, always
combining two queues that support the same signal.
Packet loss. Packet loss is the standard congestion signal as it,
e.g., naturally occurs once buffers overflow. If both queues use
packet loss as their main congestion signal, we can check for
loss responsiveness in the standard queue and move flows to
the responsive queue as soon as they have shown a response.
ECN. ECN enables signaling congestion without packet loss.
Yet, even AQM with ECN falls back to packet loss once
certain thresholds are surpassed or the buffer overflows.
Thus, when using two queues with ECN and moving ECN-
responsive flows to the responsive queue, the standard queue
will ultimately degrade to a loss queue as only non-ECN-
responsive flows remain. Then, we could also assess the loss-
responsiveness of the remaining flows. In this paper, we focus
on the queues’ main signal and leave exploring a combined
use of ECN- and loss-responsiveness for future work.

2) Queuing mechanisms: There are various queuing mech-
anisms that support packet loss or ECN congestion signals.
Drop-tail. Many queues default to a drop-tail behavior which
comes with performance penalties (cf. bufferbloat [45]). Thus,
drop-tail only makes partial sense for the standard queue while
we argue that it should not be used for the responsive queue.
AQM. There are many AQM mechanisms. Controlled Delay
(CoDel) [13] is a prominent variant with a particular focus on
delay that naturally supports ECN. Hence, we choose CoDel
as the main AQM for the standard and responsive queues.
Queue combinations. In this work, we focus on three queue
combinations: (1) a drop-tail standard queue with a loss-based
CoDel responsive queue, (2) CoDel in both queues with packet
drop, and (3) CoDel in both queues with ECN.

3) Queue assignment: Only flows classified as responsive
are assigned to the responsive queue while all other traffic
remains in the standard queue. However, responsive flows
changing the queue will be subject to different conditions and
might need time to acclimatize to the new queue. Addition-
ally, reassessments of the flow behavior could cause flows
to frequently switch the queues, in the worst case leading
to oscillations with detrimental effects on performance and
stability. To address such risks, CRQ adds two fundamental
forms of inertia that dampen the frequency of queue switching.
First, the responsiveness assessment deploys a majority voting
which reduces the rate at which flows change their assessment
if they show mostly consistent behavior (see III-A1). Second,
we reset any observed congestion signals when flows change
the queue to delay any possible reassessment by two round
trips. The two round trip delay by the second measure rep-
resents the minimum sensible time frame while larger delays
might be needed for flows showing an unstable behavior. We
leave exploring the exact impact of this delay to future work.



4) General configuration: There are different ways for
giving performance benefits to responsive flows. We could,
e.g., strictly prioritize the responsive queue, similar to L4S, or
we could assign it a larger share of the available bandwidth.
Focusing on the efficacy of traffic isolation and aiming for
a balanced evaluation of our concepts, we opt for a modest
approach that gives equal bandwidth shares to both queues
with similar configurations. Future work could study the
benefits of different queue configurations in more detail.

C. eBPF Prototype

We implement CRQ in an eBPF prototype that is partially
based on our previous implementation of SpinTrap [22]. In
short, our prototype first leverages Linux kernel tracepoints
for tracking packet loss and ECN congestion signals. We
then combine SpinTrap and TCPTrap in a joint responsiveness
assessment tool that can simultaneously assess loss- and ECN-
responsiveness based on the observed congestion signals.
We attach the tool as a tc filter and it assigns flows
different tc classids based on the assessment result.
Finally, CRQ’s queuing is implemented with a class-full
Hierarchical Token Bucket (HTB) with two child classes:
flows are enqueued based on their assigned tc classid.
For reproducibility, we publish the source code of our imple-
mentation [23]. In the following, we provide additional details.
Tracking congestion signals. We track congestion signals
using Linux tracepoints. At packet enqueue, we monitor
packet drops caused by overflowing buffers. At dequeue, we
track packet drops or CE markings caused by AQM.
Estimating sending windows. We track the sending windows
of QUIC and TCP flows with SpinTrap and TCPTrap, respec-
tively. In essence, they report new estimates as soon as a new
cycle is completed. In the case of SpinTrap, this is whenever
the spin bit flips, i.e., QUIC traffic that disables the spin bit
by using a constant value of 0 is never evaluated. In contrast,
TCPTrap always yields a new estimate for TCP traffic based
on the methodology described in Sec. III-A2.
Responsiveness assessment. Whenever SpinTrap or TCPTrap
signal the end of a cycle, we check if a flow has seen conges-
tion signals before assessing its responsiveness. Combining
the tracked congestion signals with the estimated sending
windows, we look for a corresponding window reduction as
described in Sec. III-A1; traffic that has never seen congestion
signals or has never triggered a cycle remains unclassified.

In the following, we first evaluate the assessment accuracy
of TCPTrap, followed by the evaluation of CRQ overall.

IV. EVALUATION

CRQ is designed to bring benefits to responsive flows
by isolating them from unresponsive traffic in a dedicated
queue. The achievable benefits largely depend on the specific
system configuration and could be achieved by, e.g., strictly
prioritizing responsive traffic over the standard queue or
assigning a larger bandwidth share to the responsive queue.
Aiming for a general assessment of CRQ, we focus on its
traffic isolation capabilities in this paper. In particular, we

DelayServer 1

Server 2
ClientBottleneck

CRQ + BandwidthDelay

Fig. 3. Our testbed consists of four machines. The Bottleneck emulates
different network scenarios and deploys our CRQ prototype. The Server
machines transmit data to the Client machine using QUIC, TCP, and UDP.

study the benefits and behavior of CRQ when giving both
queues equal bandwidth shares in a controlled testbed and
leave fully exploring the configuration space for future work.
In this section, we first describe our methodology in Sec. IV-A.
We then analyze CRQ’s responsiveness assessment as the basis
for its traffic isolation in Sec. IV-B, focusing on TCPTrap as
we have already evaluated SpinTrap [22]. Finally, we study
the overall performance of CRQ in Sec. IV-C.

A. Methodology

We conduct our evaluation in the testbed illustrated in Fig. 3
consisting of four Ubuntu machines that are interconnected
with Gigabit Ethernet. We deploy QUIC and TCP servers
on the Server machines (left) which then transmit data to
the Client machine (right). The Bottleneck machine shapes
network characteristics and deploys our CRQ prototype.
Network configuration. We add delay on the ingress of both
Bottleneck interfaces using Intermediate Functional Block
(IFB) interfaces and tc netem, adding half of the overall
delay to each interface. We emulate bandwidths on the egress
of the interface from Bottleneck to Client for which we
leverage CRQ’s HTB. In particular, we attach two child tc
qdiscs representing the responsive and standard queue of
CRQ which we can then configure as needed. Throughout all
settings, we configure a bottleneck buffer size equal to the
bandwidth delay product (BDP) of the corresponding queue.
Studied queues. We study the performance of CRQ for the
three queue combinations stated in Sec. III-B2. For a focused
evaluation of TCPTrap and as a baseline, we also use scenarios
where we feed all traffic into the standard queue which then
uses drop-tail, CoDel with ECN, or CoDel with packet drop.
Traffic generation. We generate TCP traffic with a custom
application on top of the Linux TCP stack which allows us
to create uni- and bidirectional traffic patterns. As the spin
bit enables meaningful unidirectional measurements, we only
consider unidirectional traffic patterns for QUIC which we
generate with picoquic [46], a well-maintained QUIC stack
that has shown interesting insights in our previous work [22].
Additionally, we use iperf3 to generate unresponsive UDP
traffic. For simplicity, we refer to picoquic as QUIC and to the
Linux TCP stack as TCP for the remainder of the evaluation.
Studied CCAs. Similar to our evaluation of SpinTrap [22],
we focus on two CCAs. First, we use Cubic as a classic loss-
based CCA that relies on the cwnd. It is the TCP default
on major operating systems, such as Linux, Windows, and
MacOS. Second, we use BBR as a modern model-based CCA
that does not use the cwnd to track congestion, but estimates
the available capacity via measurements of the BDP. For



DropTail,5 ms
0

20
40
60
80

100
Re

sp
.
Sc

or
e

DropTail,100 ms CoDel Drop,5 ms CoDel Drop,100 ms CoDel ECN,5 ms
0
20
40
60
80
100Resp.

Score

CoDel ECN,100 ms

QUIC BBR QUIC Cubic TCP BBR (u) TCP Cubic (u) TCP BBR (b) TCP Cubic (b)

Fig. 4. Responsiveness scores for single flows using different stacks and CCAs at a drop-tail queue (left), a CoDel queue with packet drop (middle), and a
CoDel queue with ECN (right) subject to different RTTs. A score of 100 corresponds to always being classified as responsive.

TCP, we use the current Linux kernel version BBRv1 while
picoquic has an adapted BBRv1 variant described to add some
reaction to packet loss and ECN. Thus, we expect picoquic and
TCP BBR to behave differently but refrain from attempting
to equalize these differences to avoid introducing a bias.
Data collection. During our tests, we capture logging infor-
mation provided by the TCP and the QUIC traffic generators.
Additionally, we collect detailed output of CRQ, including
the timestamp of each assessment, the observed congestion
signals, and the classification result which we then analyze.
Experiments. We perform twenty independent measurement
runs for each configured scenario.

B. Responsiveness Assessment

The traffic isolation capabilities of CRQ crucially depend
on the underlying responsiveness assessment provided by
SpinTrap and TCPTrap. We have already evaluated SpinTrap
in previous work [22], which is why we focus on TCPTrap
in this paper. Yet, for reference and completeness, we also
include assessment results of SpinTrap.
Experimental setup. We start a single flow that transmits
200MB of data from Server 1 to the Client machine. We
perform dedicated measurement runs for QUIC and TCP,
each with both CCAs. To further probe the impact of traffic
directionality on TCPTrap, we distinguish two cases for TCP.
In addition to the unidirectional (u) case above, we also
emulate a bidirectional (b) case where the Client mirrors half
of the received data back to the Server. As in our evaluation
for SpinTrap [22], we configure a bottleneck bandwidth of
50Mbps and evaluate two different RTTs (5ms, 100ms) as
RTTs in between showed no considerable differences in our
evaluation for SpinTrap. For each run, we finally compute the
responsiveness score as the fraction of cycles in which a flow
has been classified as responsive, such that responsive flows
should ideally get a high score. We use the majority voting
variant throughout the evaluation (cf. Sec. III-A).
Results. Fig. 4 shows the achieved responsiveness scores for
a drop-tail queue (left) and CoDel with packet drop (middle)
and ECN (right). Each point represents one measurement run.

Starting with drop-tail, we observe that most flows are
classified as responsive in a large number of runs with QUIC
Cubic being the major exception. As discussed in our previous
work [22], the main reason is that the specific Cubic imple-
mentation has a small sending window after the initial large

burst loss, yet does not react to small loss events that happen
afterward such that it arguably behaves unresponsively. In
contrast, QUIC BBR is almost always classified as responsive:
in our setup, it only periodically creates loss at the start of
its ProbeBW [47] cycle after which it reduces the sending
rate. For TCP, there is a high classification accuracy for
Cubic which shows that the SpinTrap concept is generally
transferable to TCP. Similar to QUIC, BBR is also classified
as responsive which we attribute to the same reasons as be-
fore. Surprisingly, results fluctuate more for the bidirectional
case for lower RTTs, indicating that the unidirectional cycle
detection might be a better fit for our responsiveness criteria.

Moving to CoDel with packet drop (middle), it can be
seen that SpinTrap assesses QUIC Cubic as unresponsive and
QUIC BBR as responsive due to similar reasons as above.
Considering TCP, we observe that the unidirectional cases
are always classified as responsive while both bidirectional
cases are unresponsive for low RTTs. Inspecting the behavior
in depth, we do indeed find sensible rate reductions for Cubic
but these do not result in a responsive classification due to
a combination of two reasons. First, the frequent congestion
signals of CoDel cause Cubic to operate with a low cwnd
which generally complicates showing an adequate response to
90% or less (cf. Sec. III-A1). Second, the window reduction
already occurs in the first cycle after the congestion signal
such that Cubic already increases the sending behavior when
TCPTrap makes its assessment. These results indicate that
more lenient responsiveness criteria, e.g., regarding the rate
reduction or when the response occurs, could be used to
optimize the responsiveness assessment results.

SpinTrap and TCPTrap achieve the best classification re-
sults for CoDel with ECN. In particular, TCPTrap correctly
classifies that Cubic is responsive to ECN and that the used
BBR version is not. QUIC BBR is seemingly responsive as
the ECN markings coincide with the start of the ProbeBW
cycle. In contrast, QUIC Cubic at low RTTs operates at low
sending windows and exhibits very nuanced responses which
are often assessed as insufficient by our 90% threshold.

The majority voting expectedly causes sharp distributions,
mostly always or never classifying a flow as responsive. Thus,
it seems to fulfill the intended task of providing inertia.
Takeaway. SpinTrap’s concept is generally transferable to
TCP as TCPTrap mostly provides sensible results. Contra-



DT
CoDel/DT

5 ms

DT
CoDel/DT
100 ms

QUIC BBR
QUIC Cubic

TCP BBR (u)
TCP Cubic (u)
TCP BBR (b)
TCP Cubic (b)

0.51 0.06
0.16 0.22
0.76 0.51
0.70 0.53
0.67 0.50
0.64 0.52

CoDel
CoDel/DT

5 ms

CoDel
CoDel/DT
100 ms

CoDel
Drop
5 ms

CoDel
Drop
100 ms

0.11 -0.02 -0.32 -0.04
-0.31 0.23 -0.31 0.25
-0.17 0.02 -0.19 0.06
0.24 0.11 0.43 0.16
-0.30 -0.02 -0.34 0.02
0.20 0.04 0.42 0.11

CoDel
ECN
5 ms

CoDel
ECN

100 ms
-0.35 -0.11
0.18 0.00
-0.45 0.06
0.43 0.17
-0.44 0.02
0.40 0.15

−1.0

−0.5

0.0

0.5

1.0

FC
T

Sc
or
e

Multiple flows 0.66 0.65 0.19 0.22 0.31 0.24 0.32 0.22

Fig. 5. Mean FCT score for one (Sec. IV-C1) and multiple (Sec. IV-C2) responsive flows across different queue combinations when competing with unresponsive
UDP traffic in settings with and without CRQ. Positive FCT scores correspond to a performance improvement, negative scores to performance detriments.

dicting our intuition, bidirectionality of the traffic does not aid
TCPTrap’s assessment as classification results are generally
worse than for unidirectional traffic. Overall, the assessment
performs best with ECN because it requires responses when
other congestion signals, such as packet loss or RTT estimates
used by BBR, are usually not yet emitted or noticeable.

C. Prioritizing Congestion Responsive Flows

CRQ is designed to provide traffic isolation based on the
congestion responsiveness of flows. In the previous section,
we have shown that SpinTrap and TCPTrap can reasonably
assess flow responsiveness. Hence, in this section, we turn
our attention to the effective performance that the dual-queue
design of CRQ can achieve based on the responsiveness
assessment. For this, we compare the performance of flows
when competing against unresponsive UDP traffic: once in a
setup without CRQ and once with CRQ.
Experimental setup. In baseline scenario B, we configure a
single queue with the full bandwidth of 1Gbps and one queue
scheme, i.e., drop-tail, CoDel with packet drop, or CoDel with
ECN. In CRQ scenario C, we deploy our CRQ prototype and
assign half of the overall bandwidth, i.e., 500Mbps, to each
of its two queues which we then configure with three queue
combinations (Sec. III-B2). In both scenarios, we let a single
(Sec. IV-C1) or twenty responsive flows (Sec. IV-C2) compete
against unresponsive iperf3 UDP traffic with an overall rate
of 50% of the corresponding queue bandwidth.
Performance metric. We evaluate the flow performance by
comparing the flow completion time (FCT), i.e., the time from
the initial request until the responsive flow has completed, in
the CRQ scenario to the corresponding FCT in the baseline
scenario. To fairly compare performance benefits and detri-
ments, we compute an FCT score similar to [48] as

FCTscore =

 1− FCT (C)
FCT (B) if FCT(B) > FCT(C)

−1 + FCT (B)
FCT (C) if FCT(C) ≥ FCT(B)

where FCT(B) is the FCT in the baseline scenario and FCT(C)
is the corresponding FCT in the CRQ scenario. Intuitively, our
FCT score depicts the ratio of the two FCTs by mapping

the behavior in the two settings to the range [−1, 1] with
zero indicating absolute parity. Positive values correspond to a
performance benefit of CRQ, negative values to a performance
detriment. Note that the FCT score has a non-linear behavior
with larger absolute values signaling an increasingly higher
impact. For example, 0.5 indicates that CRQ improves, i.e.,
reduces, the FCT to 50% of the baseline while −0.75 indi-
cates that CRQ causes a FCT that is larger by a factor of 4.
For each setup, we first compute the FCT score for each run
individually before taking the mean over all runs in that setup.

1) Single-Flow Behavior: In the single flow scenario, we
let a single responsive flow between Client and Server 1
transmit 1GB of data. It competes against a single iperf3
UDP flow between Client and Server 2 which we start with
a delay of 1 s. Similar to Sec. IV-B, we study QUIC and TCP
with both CCAs and consider TCP’s sending directionality.
Results. The first six rows of Fig. 5 show the mean single flow
FCT scores for four sets of queue combinations. The first two
columns compare a drop-tail (DT) queue in the baseline with
CoDel with drop (responsive queue) and DT (standard queue)
in the CRQ scenario. The next two columns compare the same
CRQ scenario configuration to CoDel with packet drop in the
baseline. Columns five to six and seven to eight deploy CoDel
in all queues with packet drop or ECN, respectively.

As can be seen, CRQ strongly improves the FCT in a large
number of cases. The main beneficiary is TCP Cubic with a
better performance in all scenarios which corresponds to the
responsiveness assessment results from Sec. IV-B. In contrast,
we notice performance detriments for TCP BBR as competing
with iperf seems to unveil that BBR does not truly respond
to packet loss or ECN. Similar observations can be made for
QUIC BBR while QUIC Cubic does not benefit as much as
TCP Cubic due to its more nuanced responses to congestion
signals which often fall short of the required 90% threshold.

Comparing the different queue combinations, we observe
the largest benefits for the first queue scenario which we
attribute to the strong differences in queuing between the DT
queue in the baseline and CoDel for responsive flows. TCP
Cubic shows similar results for both pure CoDel scenarios
while TCP BBR expectedly struggles more when being as-



sessed based on ECN responsiveness. The two QUIC CCAs
show a diverse behavior across all queue combinations which
reflects the diverse behavior from Sec. IV-B.

Overall, our findings show the general feasibility of isolat-
ing flows based on their actual congestion responsiveness as
CRQ can indeed provide benefits to responsive flows.

2) Multi-Flow Behavior: In our multi-flow scenario, we
generate 20 random combinations of 20 responsive flows out
of the available pool of stacks, CCAs, and traffic patterns
while reusing the queue combinations. Half of the flows run
between Client and Server 1 and the other half between
Client and Server 2, each transmitting 100MB. We split the
unresponsive iperf3 UDP traffic to two individual flows, one
per Server machine, which we again start with a delay of 1 s.
Results. The bottom row in Fig. 5 shows the mean FCT score
across all flows and flow combinations; we first compute the
score for each flow in each combination individually and then
aggregate the mean scores across all flows to compare the
performance in the CRQ scenario with the baseline.

We observe that CRQ improves the performance in all
scenarios when jointly considering all flows. Similar to the
single flow setting, the impact is larger for the pure CoDel
scenarios with smaller RTTs although the difference is less
nuanced than before. Digging deeper into our results, we ex-
pectedly find that the involved TCP Cubic flows see the largest
improvements in all scenarios (not shown). Furthermore, most
of the previously seen detriments for the other stacks and
CCAs vanish. TCP BBR sees the only small performance
decrease in a single scenario. We attribute these findings to the
complex interaction of the many different flows which causes
more congestion signals and also a sustained impact on the
RTT which BBR uses for adapting its sending rate.
Takeaway. The responsiveness-based dual-queue operation
of CRQ can indeed provide performance benefits to flows
with responsive CCAs. In particular, these benefits do not only
manifest when using a single flow, but are also visible for
a larger number of flows. Overall, our results indicate that
basing queuing on flow responsiveness has general utility.

V. DISCUSSION

Our evaluation shows the general usefulness of CRQ and the
feasibility of a responsiveness assessment for traffic isolation.
In the following, we discuss a selection of further consid-
erations, especially regarding CRQ’s operational use and the
impact of our work on queue management in general.
Applicability to L4S. CRQ is inspired by the L4S DualQ, but
in contrast to L4S, we deliberately use non-coupled queues to
provide strict traffic isolation. Yet, we could also transfer some
of our concepts to L4S, e.g., by extending the static classifica-
tion based on ECT(1) use with our responsiveness assessment
in order to more effectively protect against unresponsive traffic
negatively affecting the L4S queue. Thus, L4S deployments
could trade off additional state needed for tracking flows with
a more effective traffic protection.
Deployment considerations. CE markings can be lost on the
way to the receiver as there are still network devices deployed

on Internet paths that change or clear code points [18]. Hence,
similar to our considerations for SpinTrap [22], we argue that
CRQ should ideally be deployed close to the destinations to
minimize the impact of such interference. Additionally, it is
still commonly assumed that most congestion happens at the
edges of the network. With many services being provided
by large content distribution networks with well provisioned
links close to customers, the customer access side is the
likely bottleneck in many connections such that providing flow
isolation at these locations, e.g., by moving responsive video
conferencing streams to the responsive queue, could help in
improving the performance of real-time applications.
CRQ configuration space. In this paper, we study a fo-
cused configuration of CRQ to provide a fair assessment of
using congestion responsiveness for queuing. Conceptually,
however, CRQ has a rich configuration parameter space.
For example, we could explore combining queues emitting
different congestion signals, or we could also extend CRQ to
a three-queue design: one standard queue, one loss-responsive
queue, and one ECN-responsive queue. Additionally, different
bandwidth assignment strategies, e.g., giving the responsive
queue a larger share of the overall bandwidth, could be used
to tune the benefits responsive flows can receive when being
processed by CRQ. Finally, we could also dynamically adjust
the queue sizes based on queue fill rates to adapt to traffic
changes. Future work can thus leverage these opportunities
for creating more distinct incentives for responsive traffic.
TCP responsiveness assessment. SpinTrap is fueled by ex-
plicit information on individual cycles based on unidirectional
spin bit measurements. In contrast, TCPTrap relies on implicit
TCP semantics and requires bidirectional visibility. Thus,
in addition to shared difficulties with the spin bit, such as
interference of application delay, TCPTrap’s cycle detection
is also subject to fluctuations when misinterpreting the implicit
signals and it is inapplicable when only one traffic direction
can be observed. Hence, we argue that TCPTrap could benefit
from adding the spin bit as a TCP extension to enable broader
applicability and less noisy assessments.

VI. CONCLUSION

Unresponsive traffic is a potential threat to AQM as it can
wipe out the benefits provided by latest innovations such as
L4S which crucially require a fine-grained interaction between
AQM and congestion control. One of the main reasons is
that existing approaches either use probabilistic or static
mechanisms to, e.g., filter high bandwidth flows or specific
protocols, or, worse, have no protection whatsoever.

In this paper, we propose CRQ, a dual-queue system
inspired by L4S that can isolate unresponsive traffic based
on the actual flow behavior. Relying on an assessment if
flows respond to congestion signals, CRQ assigns responsive
traffic to one queue and the remaining traffic to another, thus,
protecting responsive flows from unresponsive traffic taking a
too large bandwidth share. Our evaluation shows that CRQ can
give effective benefits to responsive traffic, thus, positioning it
as an incentive giver for using responsive congestion control.



REFERENCES

[1] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 314–329, 1988.
[Online]. Available: https://doi.org/10.1145/52325.52356

[2] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and
V. Jacobson, “BBR Congestion Control,” IRTF, Internet-
Draft, 2022, work in progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control

[3] N. Cardwell, I. Swett, and J. Beshay, “BBR Congestion Control,”
IETF, Internet-Draft, 2024, work in progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr

[4] M. Duke and G. Fairhurst, “Specifying New Congestion Control
Algorithms,” IETF, Internet-Draft, 2024, work in progress. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-ccwg-rfc5033bis

[5] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The Great
Internet TCP Congestion Control Census,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp.
45:1–45:24, 2019. [Online]. Available: https://doi.org/10.1145/3366693

[6] A. Mishra, L. Rastogi, R. Joshi, and B. Leong, “Keeping an Eye
on Congestion Control in the Wild with Nebby,” in Proceedings of
the 2024 ACM SIGCOMM Conference, 2024. [Online]. Available:
https://doi.org/10.1145/3651890.3672223

[7] J. Rüth, I. Kunze, and O. Hohlfeld, “An Empirical View on Content
Provider Fairness,” in Proceedings of the 2019 IEEE/IFIP Network
Traffic Measurement and Analysis Conference (TMA), 2019. [Online].
Available: https://doi.org/10.23919/TMA.2019.8784684

[8] A. A. Philip, R. Athapathu, R. Ware, F. F. Mkocheko, A. Schlomer,
M. Shou, Z. Meng, S. Seshan, and J. Sherry, “Prudentia: Findings
of an Internet Fairness Watchdog,” in Proceedings of the 2024
ACM SIGCOMM Conference, 2024. [Online]. Available: https:
//doi.org/10.1145/3651890.3672229

[9] A. Langley, A. Riddoch, and A. Wilk et al., “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” in Proceedings of
the 2017 ACM SIGCOMM Conference, 2017. [Online]. Available:
https://doi.org/10.1145/3098822.3098842

[10] A. Mishra and B. Leong, “Containing the Cambrian Explosion
in QUIC Congestion Control,” in Proceedings of the 2023 ACM
Internet Measurement Conference (IMC), 2023. [Online]. Available:
https://doi.org/10.1145/3618257.3624811

[11] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004. [Online]. Available: https://doi.org/10.1145/1030194.
1015499

[12] S. Floyd and V. Jacobson, “Random Early Detection Gateways
for Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397–413, 1993. [Online]. Available: https:
//doi.org/10.1109/90.251892

[13] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM
Queue, vol. 10, no. 5, pp. 20–34, 2012. [Online]. Available:
https://doi.org/10.1145/2208917.2209336

[14] G. Abbas, Z. Halim, and Z. H. Abbas, “Fairness-Driven Queue
Management: A Survey and Taxonomy,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 324–367, 2016. [Online].
Available: https://doi.org/10.1109/COMST.2015.2463121

[15] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe - a stateless
active queue management scheme for approximating fair bandwidth
allocation,” in Proceedings of the 2000 IEEE Conference on
Computer Communications (INFOCOM), 2000. [Online]. Available:
https://doi.org/10.1109/INFCOM.2000.832269

[16] G. Abbas, U. Raza, Z. Halim, and K. Kifayat, “ARCH: A dual-mode
fairness-driven AQM for promoting cooperative behaviour in best effort
Internet,” IET Networks, vol. 8, no. 6, pp. 372–380, 2019. [Online].
Available: https://doi.org/10.1049/iet-net.2018.5089

[17] B. Briscoe, K. De Schepper, M. Bagnulo, and G. White, “Low
Latency, Low Loss, and Scalable Throughput (L4S) Internet
Service: Architecture,” IETF, RFC 9330, 2023. [Online]. Available:
https://doi.org/10.17487/rfc9330

[18] H. Lim, S. Kim, J. Sippe, J. Kim, G. White, C.-H. Lee, E. Wustrow,
K. Lee, D. Grunwald, and S. Ha, “A Fresh Look at ECN
Traversal in the Wild,” arXiv.2208.14523, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2208.14523

[19] K. De Schepper, O. Albisser, O. Tilmans, and B. Briscoe,
“Dual Queue Coupled AQM: Deployable Very Low Queuing

Delay for All,” arXiv.2209.01078, 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2209.01078

[20] M. Letourneau, G. Doyen, R. Cogranne, and B. Mathieu, “A
Comprehensive Characterization of Threats Targeting Low-Latency
Services: The Case of L4S,” Journal of Network and Systems
Management, vol. 31, no. 1, p. 19, 2022. [Online]. Available:
https://doi.org/10.1007/s10922-022-09706-z

[21] K. D. Schepper, B. Briscoe, and G. White, “Dual-Queue Coupled
Active Queue Management (AQM) for Low Latency, Low Loss,
and Scalable Throughput (L4S),” IETF, RFC 9332, 2023. [Online].
Available: https://doi.org/10.17487/rfc9332

[22] I. Kunze, C. Sander, L. Tissen, B. Bode, and K. Wehrle, “SpinTrap:
Catching Speeding QUIC Flows,” in Proceedings of the 2024
IEEE/IFIP International Symposium on Network Operations and
Management (NOMS), 2024. [Online]. Available: https://doi.org/10.
1109/NOMS59830.2024.10575719

[23] I. Kunze, C. Sander, M. Kosek, L. Tissen, J. Pennekamp, and
K. Wehrle, “Source code for ’Congestion-Responsive Queuing
for Internet Flows’,” 2025. [Online]. Available: https://github.com/
COMSYS/congestion-responsive-queuing

[24] K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” IETF, RFC 3168, 2001.
[Online]. Available: https://doi.org/10.17487/rfc3168

[25] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, and G. Judd,
“Data Center TCP (DCTCP): TCP Congestion Control for Data
Centers,” IETF, RFC 8257, 2017. [Online]. Available: https://doi.org/
10.17487/rfc8257

[26] K. De Schepper, O. Tilmans, B. Briscoe, and V. Goel,
“Prague Congestion Control,” IRTF, Internet-Draft, 2024, work
in progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-briscoe-iccrg-prague-congestion-control/

[27] K. De Schepper and B. Briscoe, “The Explicit Congestion Notification
(ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput
(L4S),” IETF, RFC 9331, 2023. [Online]. Available: https://doi.org/10.
17487/rfc9331

[28] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management,” IETF, RFC 7567, 2015. [Online]. Available:
https://doi.org/10.17487/rfc7567

[29] G. Chatranon, M. A. Labrador, and S. Banerjee, “BLACK: Detection
and Preferential Dropping of High Bandwidth Unresponsive Flows,”
in Proceedings of the 2003 IEEE International Conference on
Communications (ICC), 2003. [Online]. Available: https://doi.org/10.
1109/ICC.2003.1204258

[30] I. Yeom, “A rate-based drop policy for punishing unresponsive flows,”
Computer Communications, vol. 29, no. 10, pp. 1868–1878, 2006.
[Online]. Available: https://doi.org/10.1016/j.comcom.2005.05.012

[31] J. Zheng, L. Zhao, and T. Zhang, “Improving Unresponsive Flow
Control by Active Queue Management Algorithm,” in Proceedings of
the 2007 IEEE Wireless Communications and Networking Conference
(WCNC), 2007. [Online]. Available: https://doi.org/10.1109/WCNC.
2007.795

[32] S. Yi, X. Deng, G. Kesidis, and C. R. Das, “A dynamic
quarantine scheme for controlling unresponsive TCP sessions,”
Springer Telecommunication Systems, vol. 37, no. 4, pp. 169–189,
2008. [Online]. Available: https://doi.org/10.1007/s11235-008-9104-2

[33] G. Aldabbagh, M. Rio, and I. Darwazeh, “Fair Early Drop: An
Active Queue Management Scheme for the Control of Unresponsive
Flows,” in Proceedings of the 2010 IEEE International Conference
on Computer and Information Technology (CIT), 2010. [Online].
Available: https://doi.org/10.1109/CIT.2010.449

[34] S. Yilmaz and I. Matta, “On Class-based Isolation of UDP,
Short-livedand Long-lived TCP Flows,” in Proceedings of the 2001
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2001.
[Online]. Available: https://doi.org/10.1109/MASCOT.2001.948894

[35] T. Yamaguchi and Y. Takahashi, “A queue management algorithm for
fair bandwidth allocation,” Computer Communications, vol. 30, no. 9,
pp. 2048–2059, 2007. [Online]. Available: https://doi.org/10.1016/j.
comcom.2007.04.002

[36] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A First Look at QUIC
in the Wild,” in Proceedings of the 2018 International Conference
on Passive and Active Network Measurement (PAM), 2018. [Online].
Available: https://doi.org/10.1007/978-3-319-76481-8 19

https://doi.org/10.1145/52325.52356
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr
https://datatracker.ietf.org/doc/draft-ietf-ccwg-rfc5033bis
https://doi.org/10.1145/3366693
https://doi.org/10.1145/3651890.3672223
https://doi.org/10.23919/TMA.2019.8784684
https://doi.org/10.1145/3651890.3672229
https://doi.org/10.1145/3651890.3672229
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1145/1030194.1015499
https://doi.org/10.1109/90.251892
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/2208917.2209336
https://doi.org/10.1109/COMST.2015.2463121
https://doi.org/10.1109/INFCOM.2000.832269
https://doi.org/10.1049/iet-net.2018.5089
https://doi.org/10.17487/rfc9330
https://doi.org/10.48550/arXiv.2208.14523
https://doi.org/10.48550/arXiv.2209.01078
https://doi.org/10.48550/arXiv.2209.01078
https://doi.org/10.1007/s10922-022-09706-z
https://doi.org/10.17487/rfc9332
https://doi.org/10.1109/NOMS59830.2024.10575719
https://doi.org/10.1109/NOMS59830.2024.10575719
https://github.com/COMSYS/congestion-responsive-queuing
https://github.com/COMSYS/congestion-responsive-queuing
https://doi.org/10.17487/rfc3168
https://doi.org/10.17487/rfc8257
https://doi.org/10.17487/rfc8257
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/
https://doi.org/10.17487/rfc9331
https://doi.org/10.17487/rfc9331
https://doi.org/10.17487/rfc7567
https://doi.org/10.1109/ICC.2003.1204258
https://doi.org/10.1109/ICC.2003.1204258
https://doi.org/10.1016/j.comcom.2005.05.012
https://doi.org/10.1109/WCNC.2007.795
https://doi.org/10.1109/WCNC.2007.795
https://doi.org/10.1007/s11235-008-9104-2
https://doi.org/10.1109/CIT.2010.449
https://doi.org/10.1109/MASCOT.2001.948894
https://doi.org/10.1016/j.comcom.2007.04.002
https://doi.org/10.1016/j.comcom.2007.04.002
https://doi.org/10.1007/978-3-319-76481-8_19


[37] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and
G. Carle, “It’s Over 9000: Analyzing Early QUIC Deployments with
the Standardization on the Horizon,” in Proceedings of the 2021 ACM
Internet Measurement Conference (IMC), 2021. [Online]. Available:
https://doi.org/10.1145/3487552.3487826

[38] C. Sander, I. Kunze, K. Wehrle, and J. Rüth, “Video Conferencing
and Flow-Rate Fairness: A First Look at Zoom and the Impact
of Flow-Queuing AQM,” in Proceedings of the 2021 International
Conference on Passive and Active Network Measurement (PAM), 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-72582-2 1

[39] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking,
vol. 7, no. 4, pp. 458–472, 1999. [Online]. Available: https:
//doi.org/10.1109/90.793002

[40] S. Bauer, B. Jaeger, F. Helfert, P. Barias, and G. Carle, “On the
Evolution of Internet Flow Characteristics,” in Proceedings of the 2021
ACM/IRTF Applied Networking Research Workshop (ANRW), 2021.
[Online]. Available: https://doi.org/10.1145/3472305.3472321

[41] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial
Window,” IETF, RFC 3390, 2002. [Online]. Available: https:
//doi.org/10.17487/rfc3390

[42] B. Trammell and M. Kühlewind, “The Wire Image of a Network
Protocol,” IETF, RFC 8546, 2019. [Online]. Available: https:

//doi.org/10.17487/rfc8546
[43] M. Allman, R. Beverly, and B. Trammell, “Principles for Measurability

in Protocol Design,” ACM SIGCOMM Computer Communication
Review, vol. 47, no. 2, pp. 2–12, 2017. [Online]. Available:
https://doi.org/10.1145/3089262.3089264

[44] S. Sengupta, H. Kim, and J. Rexford, “Continuous In-Network
Round-Trip Time Monitoring,” in Proceedings of the 2022 ACM
SIGCOMM Conference, 2022. [Online]. Available: https://doi.org/10.
1145/3544216.3544222

[45] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, pp. 40–54, 2011. [Online]. Available:
https://doi.org/10.1145/2063166.2071893

[46] “Picoquic,” 2024. [Online]. Available: https://github.com/
private-octopus/picoquic

[47] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-Based Congestion Control: Measuring
bottleneck bandwidth and round-trip propagation time,” ACM Queue,
vol. 14, no. 5, pp. 20–53, 2016. [Online]. Available: https:
//doi.org/10.1145/3012426.3022184

[48] I. Kunze, J. Ruth, and O. Hohlfeld, “Congestion Control in the
Wild—Investigating Content Provider Fairness,” IEEE Transactions on
Network and Service Management, vol. 17, no. 2, pp. 1224–1238,
2020. [Online]. Available: https://doi.org/10.1109/TNSM.2019.2962607

https://doi.org/10.1145/3487552.3487826
https://doi.org/10.1007/978-3-030-72582-2_1
https://doi.org/10.1109/90.793002
https://doi.org/10.1109/90.793002
https://doi.org/10.1145/3472305.3472321
https://doi.org/10.17487/rfc3390
https://doi.org/10.17487/rfc3390
https://doi.org/10.17487/rfc8546
https://doi.org/10.17487/rfc8546
https://doi.org/10.1145/3089262.3089264
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/2063166.2071893
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1109/TNSM.2019.2962607

	Introduction
	Internet Congestion Management
	Congestion-Responsive Queuing (CRQ)
	Assessing Congestion Responsiveness
	SpinTrap
	TCPTrap

	Queue Mechanism
	Congestion signals
	Queuing mechanisms
	Queue assignment
	General configuration

	eBPF Prototype

	Evaluation
	Methodology
	Responsiveness Assessment
	Prioritizing Congestion Responsive Flows
	Single-Flow Behavior
	Multi-Flow Behavior


	Discussion
	Conclusion
	References

