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Abstract 

Sharing data between companies throughout the supply chain is expected to be beneficial for product quality as well as for the economical savings 
in the manufacturing industry. To utilize the available data in the vision of an Internet of Production (IoP) a precise condition monitoring of 
manufacturing and production processes that facilitates the quantification of influences throughout the supply chain is inevitable. In this paper, 
we consider stamping processes in the context of an Internet of Production and the preliminaries for analytical models that utilize the ever-
increasing available data. Three research objectives to cope with the amount of data and for a methodology to monitor, analyze and evaluate the 
influence of available data onto stamping processes have been identified: (i) State detection based on cyclic sensor signals, (ii) mapping of in- 
and output parameter variations onto process states, and (iii) models for edge and in-network computing approaches. After discussing state-of-
the-art approaches to monitor stamping processes and the introduction of the fineblanking process as an exemplary stamping process, a research 
roadmap for an IoP enabling modeling framework is presented. 
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1. Introduction 

Over the past decades, metal stamping technology has been 
replacing other metal forming processes such as forging and 
die-casting, caused by its low production time, costs, and the 
enhanced quality features [1]. Currently, around 20 % of car 
parts are manufactured using different stamping processes. 
According to a report by Grand View Research Inc. the global 
market for metal stamping is predicted to reach USD 299.6 
billion by 2025 [2]. As a result to the quantities of produced 
workpieces, even a minor improvement in productivity, e.g. a 
few cents per workpiece, have a high economical influence. 
The increasing exchange of data throughout the supply chain, 
process control and the digitization have the potential to 
significantly lower the time to market and substantially grow 
the profit gains [3]. Hence, tools to model stamping processes 
are required to determine the influence of changing parameters 
in the supply chain onto the process and its outcome. 

The vision of an Internet of Production (IoP) pursues 
enhancements in the area of production technology, both 
locally and globally [4]. While local improvements deal with 
measuring and storing all data sources and sensors to make 
them accessible to new means of context-aware analyses and 
may relate to traditional monitoring and embedded sensor 
approaches, the global improvements result from an 
interconnection of various data sources even from different 
stakeholders, effectively enabling (cross-domain) 
collaborations to utilize production technology advances on a 
large scale, i.e., in the complete IoP. For an IoP to turn into a 
reality, various research challenges still remain. On the one 
hand, the vast amount of (measurable) process data overloads 
current infrastructures and does not scale with existing data 
models and storage systems [5]. Consequentially, mandating a 
careful selection of required process information which is 
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die-casting, caused by its low production time, costs, and the 
enhanced quality features [1]. Currently, around 20 % of car 
parts are manufactured using different stamping processes. 
According to a report by Grand View Research Inc. the global 
market for metal stamping is predicted to reach USD 299.6 
billion by 2025 [2]. As a result to the quantities of produced 
workpieces, even a minor improvement in productivity, e.g. a 
few cents per workpiece, have a high economical influence. 
The increasing exchange of data throughout the supply chain, 
process control and the digitization have the potential to 
significantly lower the time to market and substantially grow 
the profit gains [3]. Hence, tools to model stamping processes 
are required to determine the influence of changing parameters 
in the supply chain onto the process and its outcome. 

The vision of an Internet of Production (IoP) pursues 
enhancements in the area of production technology, both 
locally and globally [4]. While local improvements deal with 
measuring and storing all data sources and sensors to make 
them accessible to new means of context-aware analyses and 
may relate to traditional monitoring and embedded sensor 
approaches, the global improvements result from an 
interconnection of various data sources even from different 
stakeholders, effectively enabling (cross-domain) 
collaborations to utilize production technology advances on a 
large scale, i.e., in the complete IoP. For an IoP to turn into a 
reality, various research challenges still remain. On the one 
hand, the vast amount of (measurable) process data overloads 
current infrastructures and does not scale with existing data 
models and storage systems [5]. Consequentially, mandating a 
careful selection of required process information which is 
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According to a report by Grand View Research Inc. the global 
market for metal stamping is predicted to reach USD 299.6 
billion by 2025 [2]. As a result to the quantities of produced 
workpieces, even a minor improvement in productivity, e.g. a 
few cents per workpiece, have a high economical influence. 
The increasing exchange of data throughout the supply chain, 
process control and the digitization have the potential to 
significantly lower the time to market and substantially grow 
the profit gains [3]. Hence, tools to model stamping processes 
are required to determine the influence of changing parameters 
in the supply chain onto the process and its outcome. 

The vision of an Internet of Production (IoP) pursues 
enhancements in the area of production technology, both 
locally and globally [4]. While local improvements deal with 
measuring and storing all data sources and sensors to make 
them accessible to new means of context-aware analyses and 
may relate to traditional monitoring and embedded sensor 
approaches, the global improvements result from an 
interconnection of various data sources even from different 
stakeholders, effectively enabling (cross-domain) 
collaborations to utilize production technology advances on a 
large scale, i.e., in the complete IoP. For an IoP to turn into a 
reality, various research challenges still remain. On the one 
hand, the vast amount of (measurable) process data overloads 
current infrastructures and does not scale with existing data 
models and storage systems [5]. Consequentially, mandating a 
careful selection of required process information which is 
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highly valuable in subsequent analyses or control loops. 
Furthermore, the currently deployed infrastructure should be 
revised wrt. the capabilities of network resources and available 
cloud services. On the other hand, transferring company data 
(along the supply chain) is concerning from an information 
security perspective as control over valuable data in potentially 
untrusted environments is lost, while potentially revealing 
secret process information [6] or revealing communicating 
parties [7]. Therefore, the trade-off between the benefits of 
collaborating in an IoP and the precision requirements for 
shared process information must be analyzed meticulously. 
Given that these decisions must be reached in light of each 
specific application, no single overarching solution exists. 
However, new approaches also promise to enable privacy-
preserving database requests even from remote knowledge 
databases [8]. Overall, significant research efforts are required 
to utilize the benefits in production technology as envisioned 
by an IoP.  

Stamping is classified as one of the manufacturing 
operations in which shape, geometry, and physical properties 
are altered. Based on its principle, it is defined as a process in 
which thin-walled flat metal parts are shaped by punches and 
cutting dies to convert them into more complex three-
dimensional pieces. According to the process parameters, such 
as the temperature, speed, deformation level and the desired 
product shapes, the stamping process can be categorized into 
different types such as deep drawing and blanking [9]. Similar 
to all the manufacturing processes, the mechanical degradation 
of the moving functional parts, the operating conditions, as well 
as the setup and human errors generate undeniable process 
inefficiency and produce inferior quality of the products. 
Downtimes due to corrupt process setups, machine failures or 
the usage of material that does not fit the tolerance of the 
process cause uneconomically usage of a stamping plant [10]. 
Hence, for an economically efficient usage of a plant, an 
effective monitoring system is a preliminary [11]. Whereas 
different stamping technologies have distinct differences in 
their technological foundation and mechanical effects, they 
also have undeniable similarities in terms of data analysis. Data 
acquired at the input of the process include continuous data of 
sheet metal properties, lubrication, and environmental factors, 

cyclic based sensor signals often acquired at the tool, such as 
forces or acoustic emission, and event-based data contained in 
control information of the machine. In the envisioned IoP, a 
monitoring system does not only take variations and 
degradations of elements into account, but also be able to use 
the vast amount of available abstract supply chain of different 
stakeholders and cross-domain data to effectively utilize the 
potentials of an IoP, see Figure 1. 

 
In previous work, cyclic based sensor signals have been 

subject to various research that connecting variations to 
specific condition changes in the process [12]. Specifically, 
force and strain signals have been studied regarding its 
potential to monitor the underlying stamping process [13] so 
that signals and their extracted features have been linked to 
changing conditions in the context of different issues [14], 
namely, blank thickness changes [12], cushion pressure 
changes [15], slug at the tool [16] and workpiece failures [17]. 
Furthermore, it has been shown that the changes in lubrication 
and tool wear mechanisms can be detected by solely analyzing 
punch force variations [18]. A significant fraction of the 
product-to-product variation in the process can be predicted 
based on force measurements [19]. Tools that have been used 
to extract features of segments from the strain or force signals 
include principal component analysis [20], support vector 
machines [21], bispectral analysis [16], neural networks [22] 
and wavelet transformation [23]. During the analysis of these 
signals, approaches to break the strain or force signals into 
segments have been discussed, either based on different phases 
within the underlying forming process [15], or hierarchical 
splitting of the segments into smaller segments [24]. In the next 
step, the extracted features have been combined with 
unsupervised learning approaches, to classify force shape 
variations onto faulty states [25]. To predict the variations of 
punches in the future, Hidden Markov Models have been used 
to describe the dependencies between the punches [26].  

Apart from the strain and force signals, acoustic emission 
and vibration have been studied extensively to detect wear, 
cracks or other faulty states during stamping processes [27] 
where vibration or audio sensors imply high frequencies. It has 
been shown that features of vibration signals are linked to 
various changing input parameters such as blank misfeed or 
thickness [28]. By using vibration signals in the piercing 
process, a logistic regression model estimates the tool condition 

Figure 1. A schematic dataflow envisioned by the IoP can provide opportunities to manufacturers of different stakeholders. Suppliers of operational material, 
such as lubricant, material supplier or customer can be used to incorporate feedback data and adjust the process to reduce the necessity of secondary finishing 
processes. Additionally, data exchange between the different cycles of process development, production and usage cycle between several companies or within 
one company provides the potential to optimize processes and unravel new cause-effect relationships. 
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and detects punch breakage with an accuracy of up to 99 % 
[29]. Furthermore, acoustic emission signals can be used to 
detect cracks in e.g. automotive stamping processes [30], 
identifying the progression of wear [31] and have been studied 
in terms of sound based event detection in the sheet metal 
stamping [32]. 

In summary, the analysis of cyclic force, strain, acoustic 
emission and vibration signals of stamping processes contains 
rich information about the defects of products and state changes 
of the process which is a preliminary to use these signals in an 
effective monitoring system. Therefore, implementing an 
advanced state detection methodology based on cyclic sensor 
data variations offers high potential to capture occurring 
condition changes in detail, which is the foundation for an IoP 
enabled monitoring system.  

 
In this paper, the focus is set on identifying research 

objectives to analyze stamping processes in context of an IoP 
by investigating particularly the fineblanking process as the 
case study.  In the next section, a detailed description of the 
identified research objectives that enable the integration of 
sheet metal stamping processes into an IoP is stated and 
discussed. Next, in Section 3, the experimental and data 
acquisition setup at the research facility’s shop floor that allows 
the pursuit of the research objectives in an industrial context is 
given. Eventually, a conclusion of the proposed research 
challenges is presented in Section 4. 

2. Stamping processes in an Internet of Production 

The vision of an Internet of Production describes that data 
and information are exchanged between the product 
development, production and usage cycle, as well as between 
companies alongside the supply chain. The providers of the coil 
material used in a stamping process gets feedback information 

about the performance of the coil during the process which 
grants them a larger dataset to optimize their product quality. 
On the other hand, the coil material supplier can provide 
manufacturers with detailed information about material 
properties for each position on the coil, so that manufactures 
can setup their process accordingly, leading to fewer amounts 
of produced scrap or wear at the tool. In addition, data from 
customers about the performance of individual workpieces can 
be correlated with process parameter setups in the 
manufacturing process, effectively enabling the optimization of 
the process based on real feedback data on a per workpiece 
basis. Since, from a data point of view, all stamping processes 
have continuous input, cyclic based data regarding the punch 
and often event data for influences or machine control 
information, models that connect the different data sources 
derived by the study of a specific stamping process have the 
potential to be generalizable for other stamping processes. 

Practically, in stamping processes each punch cycle shows 
variations in the cycle based force measurement signal [18] and 
quality features vary within certain boundaries [33] due to 
changing input condition of the process, e.g. fluctuating 
material properties of the sheet metal [34]. Thus, the outcome 
is changing continuously with the input, while the process 
setup remains unchanged [19]. To understand the inter-
connection between the fluctuations within the signals 
themselves, changing input parameters and the quality features 
can be identified as one of the most important goals to achieve, 
since it allows the mapping of (e.g. changes higher up in the 
supply chain) onto the process and its quality outcome. 
Additionally, adequate approaches to store and process the vast 
amounts of data created during the process [5] has to be taken 
into account. To this end, three main obstacles have to be 
addressed, see Figure 2: (i) State detection based on cyclic 
sensor signals, (ii) mapping of in- and output parameter 
variations onto process states, and (iii) models for edge and in-
network computing approaches. 

Figure 2. The goal for a holistic stamping process modelling is that the available data from upstream and downstream processes can be mapped onto anomalies, 
states and events detected during the process execution. In this figure, rolling as an example upstream process and a workpiece that represents a set of characteristic 
geometries is illustrated. The first research question (RQ1) considers the detailed process monitoring of blanking itself, where the second research question 2 (RQ2) 
focuses on mapping the output and input onto anomalies and events detected in the process monitoring. The third research question deals with the embedding of 
the approaches into edge and in-network approaches [5] to reduce and handle the amount of produced data. 
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State detection based on cyclic sensor signals: For every 

punch, each sensor signal has a characteristic shape, with slight 
variations both regularly and irregularly, in Figure 3 data of an 
exemplary fineblanking punch is presented. Based on the 
variations of an assumed stable process, each punch (or a series 
of punches) can be associated to a particular state. A state, in 
this context, is defined as a representation of a particular 
condition of the process that does not necessarily has to be 
known. The state is determined based on a distinguished set of 
current sensors’ signal shapes and features, whereas a state 
change indicates a change in the sensor signals’ feature set that 
may relate to changes in the underlying physical process. As a 
result, data of a stamping process can be discretized wrt. 
punches and a series of punches can be classified into a series 
of states, with each state distinguished from another one by a, 
possibly unknown, change in condition. Various researchers 
have proven that features of acoustic emission and force signals 
are independently linked to different conditions of the 
underlying forming process, cf. Section 1. Thus, an analysis of 
the combined feature space of all the different cyclic sensor 
signals together has a high potential. Advanced monitoring 
approaches for manufacturing processes already sketched 
detailed pipelines to monitor state changes of the underlying 
manufacturing process [35], see Figure 4. Raw signals can be 
decomposed into individual components, e.g. frequency 
components with DWT [36], features are extracted, selected 
[37] and eventually, reduced to the desired number of signals 
to train predictive models [38]. For manufacturing processes, it 

is unrealistic to have a sufficient amount of labelled sensor 
signal events for all condition changes [38]. As a result, in a 
next step the unsupervised detection of state changes within the 
derived feature space during the process based on all available 
sensor data is essential to effectively monitor and track the 
behavior of stamping processes.  

Mapping of in- and output parameter variations onto 
process states: Based on the acquired sensor data of the in- and 
output of the machine, the detected conditions have to be linked 
to physical condition changes that influences the process, e.g. 
changes in the tribological system of the process influenced by 
surface roughness or lubricant. This data provides valuable 
information about the cause of variations in sensor signals 
measured at the tool and their effect onto the outcome of the 
process, namely, the quality features of the workpieces. 
Technically, these questions relate to the classical supervised 
learning applications. Given the input parameters, such as 
hardness condition of the material, roughness of the surface, 
temperature, vibration and humidity of the environment, and 
the label, namely the state, it is to predict the state or state 
changes that will occur in the process. At the same time, given 
output parameters like the die roll or shearing surface quality, 
the goal is to connect the derived states with these output 
parameters enabling their prediction.  The same techniques can 
also be used to predict future developments of process 
conditions based on the current state and features of sensor 
signals derived by the current punch [26]. These Hidden 
Markov Models provide an appropriate framework for 
modelling of manufacturing process in general, and need to be 

Figure 3. The force and stroke signals represent characteristic process signature. For a detailed analysis, the signals can be decomposed into three 
logical segments regarding the clamping of the sheet metal, execution of the blanking process and ejection of the punch out of the sheet metal. 
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adapted for the usage in stamping processes. The necessity for 
these models and questions motivated the experimental setup 
described in Section 3 that allows the tracking of various input 
parameters. A future challenge is measuring quality features 
online so that the full dataset not only contains input 
information, but also the output information of every single 
punch, allowing to directly correlate condition changes onto the 
quality features of interest. Eventually, this enables not only to 
quantify the influence of effects onto the process, but also 
allows to identify new cause-effect relationships and parameter 
setup optimization. 

Models for edge and in-network computing approaches: 
Depending on the types of used sensors and their concrete 
configuration, the overall amount of data collected at the 
fineblanking machine can easily surpass 6 Gbit/s [5]. Storing 
such amounts of data on local storage platforms is not feasible; 
outsourcing the data to off-premise clouds is not a viable option 
either as typical Internet access speeds are insufficient. 
Besides, privacy risks of cloud services have been studied [39], 
revealing an entanglement and opaqueness of different cloud 
providers, i.e., exposing sensitive information to third parties. 
In this regard, a joint architecture which makes use of edge, in-
network and cloud computing approaches offers a very 
promising starting point, especially if it purposefully combines 
the advantages of the different concepts [5]. By performing 
computations and analysis steps as close to the source of data 
as possible, the amount of transmitted data can effectively be 
reduced. Simple filtering mechanisms are for example a viable 
option if the transmission frequency of the sensors cannot be 
configured and is higher than needed. In this case, in-network 
filters placed on general networking devices, such as switches, 
can shape down the transmission frequency, preventing a 
network overload. With growing complexity, either operations 
can be placed on edge or ultimately on cloud computing 
platforms, although placing them further away from the data 
sources diminishes their positive effect [40]. Apart from 
improving the data collection and analysis mechanisms, the 
proposed architecture can also support the control of the 
physical processes which underlie the forming process. Such 

processes are typically subject to tight latency constraints as 
e.g. punching can result in over 1000 punches per minute, 
which is why the control is performed on dedicated PLC 
controllers in close vicinity to the controlled machines. The 
PLCs are limited in their computational capabilities and cannot 
be used for more complex control loops. A joint architecture 
that distributes parts of the control functionality on the different 
available components, e.g. simple versions on in-network 
devices for a fast response time while more complex versions 
can be placed on edge or cloud platforms [41], could offer a 
viable solution, but the coordination between the different 
components is yet not well-researched. To this end, the 
proposed research group COIN of the IRTF is working on 
exploring the continuum between in-network, edge and cloud 
computing. Hereby, identifying guidelines as to where to place 
which function is especially important. 

3. An Internet of Production-enabled fineblanking line 

To develop methods and models for stamping operations an 
authentic experimental setup that represents conditions in a 
mass production environment, especially wrt. the number of 
produced workpieces is required. Hence, fineblanking is 
regarded as an exemplary process for data generation and the 
developing methodologies. Blanking processes are one of the 
most important stamping processes in the industry, where the 
incoming material is sheared to the desired shape. To overcome 
the defects coming from the process design the process have 
been developed to hot blanking, high-speed blanking, and 
fineblanking [42] 

3.1. The production line 

Fineblanking is a precision forming process for producing 
functional metal components with smooth-sheared edges over 
the entire workpiece in just one-step forming action with a 
small die clearance compared to conventional blanking [43]. 
While the conventional blanking tool is composed from two 
main parts, the punch and the die, the fineblanking tool is more 

Figure 4. A common pipeline for unlabeled state detection can consists of different steps [33]. Raw data is acquired at the process and processed by decomposing 
the signal into its components, e.g. frequency components, extracting features, selection features and reducing the dimensionality of the features. All steps can be 
either skipped or combined; the outcome is then used for a clustering to find similar patterns.   
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advanced and contains two additional parts, the blank holder 
and the counterpunch [42]. These special tool designs affect the 
material flow characteristics, so that the deformation in 
fineblanking process is more violent and localized than in 
conventional blanking [44].  

Despite the relatively good workpiece quality, qualitative 
defects of the fineblanked components can impair their 
functionality. Thus, the uncertainties that prevail in the 
manufacture of fineblanked components are not identical and 
require expensive secondary finishing steps, e.g. grinding, to 
achieve quality features accuracy with respect to surface 
topography, dimensions and geometry. In a typical setup, first, 
a decoiler unrolls the raw material, which is usually a 1 – 20 
mm thick and 50 – 250 mm wide metal coil. The decoiled sheet 
is then fed into a leveler to relieve the residual stresses as far as 
possible [9]. Eventually, before the actual fineblanking process 
takes place in the press, a lubricant film is applied on the metal 
sheet, which is then cut by the tool of the press.  

The specific equipment of the fineblanking line consists of a 
coil system that feeds the coil into the straightener from ARKU 
and advances the coil to the servo-mechanical Feintool XFT 
2500 Speed fineblanking press with a lubrication system from 
TechnoTrans. The press can be configured to run with a 
speedup of up to 140 strokes/min. 

3.2. Data acquisition 

The fineblanking line located at the research institute is 
subjected to research experiments and has been equipped with 
21 additional sensors to monitor process parameters during the 
blanking process execution. Executed experiments include 
lubricant, material, punch-alloy and punch material variations 
as well as variations in the process setup such as speed, where 
in most experimental setups several thousand punching 
operations are performed.  

Machine: The SPS-bus system of the fineblanking line is 
used to exchange a reduced process image between the 
decoiler, leveler, lubricator and press, but also for components 
inside the press itself. The data gathered at the SPS-bus system 
are sampled with a frequency of 2.5 kHz and contain time series 
data about power consumption, state information of different 
machine components as well as build-in sensor signals such as 

punch acceleration, temperature or hydraulic pressure sensors. 
Tool: The tool has been modified to allow the measurement of 
forces applied onto the components of the tool, see Figure 5. 
The punch (x4), counter punch (x1) and blank holder (x4) 
forces are measured redundantly to ensure precision of 
measured forces. Furthermore, four piezoelectric bolts measure 
peripheral forces applied onto the tool during the process. The 
acceleration and stroke of both the punch and counterpunch, as 
well as all force sensors, are sampled with 10 kHz and acquired 
via an additional measuring system independent of the SPS-bus 
system. Exemplary stroke and force measurements for one 
punch measured at the tool is presented in Figure 3.   

Material: The properties of the material and its surface are 
critical for the outcome of the fineblanking process [45]. 
Unfortunately, these properties are fluctuating within a certain 
tolerance given by the manufacturer [35]. To correlate 
deviations in the force signals with changes in the input to the 
process it is necessary to measure those properties inline. In the 
described setup a sensor system to measure the roughness of 
the surface, a system to measure the thickness of the coil and a 
sensor system based on the effects of magnetic barkhausen 
noise for hardness conditions [46], are used to measure 
incoming material properties.  

Quality Features: The quality features of the workpiece, 
mainly the die roll at all positions of interest is acquired by 
scanning it with GOM ATOS optical measurement system [47] 
to generate the 3D model of the workpiece.  

Environment: To measure other factors of the environment 
that influences the outcome of the process sensors for humidity, 
temperature, air pressure and vibration have been applied onto 
the tool as well as outside onto the machine.  

In summary, the sensory equipment can acquire data 
containing information about the input of the process including 
material and surface properties as well as environmental 
conditions, information about the machine itself via the SPS-
signals, process execution and output of the process. Together 
with the heterogeneity of executed experiments, an analysis 
and comprehensive data driven understanding of the process 
itself and its direct influences can effectively be conducted 
using the described process setup. 

Figure 5. The fineblanking tool displayed is equipped with various sensors to acquire sensitive process information. All the information generated by the sensors 
in the above figure are not transferred via the SPS-bus system, but acquired with additional measuring equipment. 



 Philipp Niemietz  et al. / Procedia Manufacturing 49 (2020) 61–68 67
 Philipp Niemietz et al. / Procedia Manufacturing 00 (2019) 000–000  7 

 

4. Conclusion 

The availability of data shared between companies along the 
supply chain as well as across stakeholders and product 
domains as envisioned by an Internet of Production (IoP) can 
contribute to reduce costs, improve quality and increase profit 
margins in manufacturing companies. To make use of the 
increasing availability of data in a production environment, it 
is essential to enable companies to quantify external influences 
onto their manufacturing process as well as predicting the 
expected outcome to give valuable feedback to suppliers and 
domains regarding their product quality. Where in existing 
condition monitoring approaches state changes of stamping 
processes are based on the analysis of single sensor signals, 
new holistic models that utilize multiple sensor signals are 
needed to capture a complete state of the process at a given 
time. 

 In this paper, the modelling of stamping processes in 
general, and specifically of a fineblanking line, is discussed and 
three main research objectives are identified: (i) State detection 
based on cyclic sensor signals, (ii) mapping of in- and output 
parameter variations onto process states, and (iii) models for 
edge and in-network computing approaches. Given the 
experimental setup described in this paper, the research 
objectives will be studied using the data of various research 
experiments executed on the stamping machine. Especially, the 
high frequency, quantity and heterogeneity of the acquired data 
allow to conduct studies on the performance of different 
methods to detect state changes in the forming process that 
have not been recognized before. Datasets containing input 
data for the process, sensor signals of the process itself, wear 
progression of tool elements and variations of quality measures 
of the resulting work pieces allow not only to fully decompose 
the process into different states but also the development of 
analytical models that enable manufacturers to use the data 
available in an envisioned Internet of Production. 
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